Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T15:08:34.009Z Has data issue: false hasContentIssue false

Design of a dual-band power combining architecture for high-power microwave applications

Published online by Cambridge University Press:  11 June 2010

Qiang Zhang*
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Chengwei Yuan
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Lie Liu
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
*
Address correspondence and reprint requests to: Q. Zhang, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China. E-mail: [email protected]

Abstract

The remaining challenges, confronting the limited output peak power level of high-power microwave (HPM) sources, stimulate the development of power combining system. This paper reports the design methods and numerical results for a kind of dual-band incoherent power combining architecture applied in HPM. It is particularly effective to radiate dual-band microwave simultaneously, generated by a coaxial dual-band HPM source or two separate HPM sources of different bands. Two types of mode conversion structures, i.e., a dual-band feed line with co-aligned ports and a dual-band feed line with off-aligned ports, are proposed, where coaxial output port itself is adopted to connect the coaxial dual-band horn feed. These two types of feed lines provide a high conversion efficiency of about 98% from TEM or TM01 mode to TE11 mode and a bandwidth of about 10% at each band. The horn feed, with a high power handling capacity, is compact, and a good far-field radiation pattern at each band has been achieved by combining horizontal and vertical corrugations. Thus, the dual-band radiation system has not only realized incoherent power combination, with higher output peak power level, but also is suitable for feeding of, e.g., offset shaped single-reflector antennas in dual-band HPM systems in the future.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, R.J. & Schamiloglu, E. (2001). High-Power Microwave Sources and Technologies. New York: The Institute of Electrical and Electronics Engineers, Inc.CrossRefGoogle Scholar
Belomyttsev, S.Y., Grishkov, A.A., Korovin, S.D. & Ryzhov, V.V. (2003). On the current of an annular electron beam with a virtual cathode in a drift tube. Laser Part. Beams 21, 561565.CrossRefGoogle Scholar
Benford, J., Swegle, J.A. & Schamiloglu, E. (2007). High Power Microwaves-2nd ed. New York & London: Taylor & Francis Group.CrossRefGoogle Scholar
Eltchaninov, A.A., Korovin, S.D., Rostov, V.V., Pegel, I.V., Mesyats, G.A., Rukin, S.N., Shpak, V.G., Yalandin, M.I. & Ginzburg, N.S. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187196.CrossRefGoogle Scholar
Fan, Y.W., Yuan, C.W., Zhong, H.H., Shu, T., Zhang, J.D., Yang, J.H., Yang, H.W., Wang, Y. & Luo, L. (2007). Experimental Investigation of an Improved MILO. IEEE Trans. on Plasma Sci. 35, 10751080.CrossRefGoogle Scholar
Fan, Y.W., Zhong, H.H., Li, Z.Q., Shu, T., Zhang, J.D., Zhang, J., Zhang, X.P., Yang, J.H. & Luo, L. (2007). A double-band high-power microwave source. Journal of Applied Physics 102.CrossRefGoogle Scholar
Flodin, J., Kildal, P.S. & Kishk, A. (1996). Moment Method Design of a Large S/X Band Corrugated Horn. Antennas and Propagation Society International Symposium 3, 20302033.Google Scholar
Imbriale, W.A. (2005). An alternative feed design for the MRO antenna. IEEE Trans. Antennas Propag. 5, 761764.Google Scholar
James, G.L. (1981). Analysis and Design of TE11-to-HE11 Corrugated Cylindrical Waveguide Mode Converters. IEEE Trans. on Microwave Theory and Techniques 29, 10591066.CrossRefGoogle Scholar
James, G.L. & Thomas, B.M. (1982). TE11 to HE11 Cylindrical Waveguide Mode Converters Using Ring-Loaded Slots. IEEE Trans. on Microwave Theory and Techniques 30, 278285.CrossRefGoogle Scholar
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Volkov, S.N. & Zherlitsyn, A.A. (2003). Decimeter-band frequency-tunable sources of high-power microwave pulses. Laser Part. Beams 21, 175185.CrossRefGoogle Scholar
Lemke, R.W., Calico, S.E. & Clark, M.C. (1997). Investigation of a load-limited magnetically insulated transmission line oscillator (MILO). IEEE Trans. Plasma Sci. 25, 364374.CrossRefGoogle Scholar
Li, G.L., Yuan, C.W., Zhang, J.Y., Shu, T. & Zhang, J. (2008). A diplexer for gigawatt class high power microwaves. Laser Part. Beams 26, 371377.CrossRefGoogle Scholar
Li, H. & Thumm, M. (1991). Mode conversion due to curvature in corrugated waveguides. Int. J. Electron. 71, 333347.CrossRefGoogle Scholar
Li, L., Liu, L., Cheng, G., Chang, L., Wan, H. & Wen, J. (2009 a). Electrical explosion process and amorphous structure of carbon fibers under high-density current pulse igniting intense electron-beam accelerator. Laser Part. Beams 27, 511520.CrossRefGoogle Scholar
Li, L., Liu, L., Cheng, G., Xu, Q., Ge, X. & Wen, J. (2009 b). Layer structure, plasma jet, and thermal dynamics of Cu target irradiated by relativistic pulsed electron beam. Laser Part. Beams 27, 497509.CrossRefGoogle Scholar
Li, L., Liu, L., Xu, Q., Chen, G., Chang, L., Wan, H. & Wen, J. (2009 c). Relativistic electron beam source with uniform high-density emitters by pulsed power generators. Laser Part. Beams 27, 335344.CrossRefGoogle Scholar
Li, Z.Q., Zhong, H.H., Fan, Y.W., Shu, T., Yang, J.H., Yuan, C.W., Xu, L.R. & Zhao, Y.S. (2008). Simulation and Experimental Research of a Novel Vircator. Chin. Phys. Lett. 25, 25662568.Google Scholar
Liu, J.L., Cheng, X.B., Qian, B.L., Ge, B., Zhang, J.D. & Wang, X.X. (2009). Study on strip spiral Blumlein line for the pulsed forming line of intense electron-beam accelerators. Laser Part. Beams 27, 95102.CrossRefGoogle Scholar
Liu, J.L., Li, C.L., Zhang, J.D., Li, S.Z. & Wang, X.X. (2006). A spiral strip transformer type electron-beam accelerator. Laser Part. Beams 24, 355358.CrossRefGoogle Scholar
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Chen, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007 a). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.CrossRefGoogle Scholar
Liu, J.L., Zhan, T.W., Zhang, J., Liu, Z.X., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007 b). A Tesla pulse transformer for spiral water pulse forming line charging. Laser Part. Beams 25, 305312.CrossRefGoogle Scholar
Liu, R., Zou, X., Wang, X., He, L. & Zeng, N. (2008). X-pinch experiments with pulsed power generator (PPG-1) at Tsinghua University. Laser Part. Beams 26, 3336.CrossRefGoogle Scholar
Morgan, S.P. (1957). Theory of curved circular waveguide containing an inhomogeneous dielectric. Bell Syst. J. 12091251.CrossRefGoogle Scholar
Sze, H., Benford, J. & Woo, W. (1987). High-power microwave emission from a virtual cathode oscillator. Laser Part. Beams 5, 675681.CrossRefGoogle Scholar
Teniente, J., Goňi, D., Gonzalo, R. & del-Río, C. (2002). Choked Gaussian Antenna: Extremely Low Sidelobe Compact Antenna Design. IEEE Antennas and Wireless Propag. Lett. 1, 200202.CrossRefGoogle Scholar
Teniente, J., Gonzalo, R. & del-Río, C. (2006). Innovative High-Gain Corrugated Horn Antenna Combining Horizontal and Vertical Corrugations. IEEE Antennas and Wireless Propag. Lett. 5, 380383.CrossRefGoogle Scholar
Thumm, M. (1984). High Power Millimetre-Wave Mode Converters in Overmoded Circular Waveguides using Periodic Wall Perturbations. Int. J. Electronics 57, 12251246.CrossRefGoogle Scholar
Thumm, M. (1986). High Power Mode Conversion for Linearly Polarized HE11 Hybrid Mode Output. Int. J. Electronics 61, 11351153.CrossRefGoogle Scholar
Vardaxoglou, J.C., Seager, R.D. & Robinson, A.J. (1992). Novel ‘soft’ horn antenna for multiband operation. IEE Colloquium on Multi-Band Antennas.Google Scholar
Yang, S. & Li, H.F. (1997). Optimization of novel high-power millimeter-wave TM01-TE11 mode converters. IEEE Trans. on Microwave Theory and Techniques 45, 552554.CrossRefGoogle Scholar
Yatsui, K., Shimiya, K., Masugata, K., Shigeta, M. & Shibata, K. (2005). Characteristics of pulsed power generator by versatile inductive voltage adder. Laser Part. Beams 23, 573581.CrossRefGoogle Scholar
Ying, Z., Kishk, A.A. & Kidal, P.S. (1995). Broadband compact horn feed for prime-focus reflectors. Electronics Lett. 31, 11141115.CrossRefGoogle Scholar
Yuan, C.W., Liu, Q.X., Zhong, H.H. & Qian, B.L. (2005). A novel TEM-TE11 mode converter. IEEE Microw. Wireless Component Lett. 15, 513515.CrossRefGoogle Scholar
Yuan, C.W. & Zhang, Q. (2009). Design of a TM01-TE11 Transmission Line for High-Power Microwave Applications. IEEE Trans. on Plasma Sci. 37, 19081915.CrossRefGoogle Scholar
Zhang, Q., Yuan, C.W. & Liu, L. (2009). A Coaxial Corrugated Dual-band Horn Feed. IEEE Antennas Wireless Propag. Lett. 8, 13571359.CrossRefGoogle Scholar
Zhang, Q., Yuan, C.W. & Liu, L. (2010). Design of a coaxial radiation feeder structure applied in dual-band feed. High Power Laser and Particle Beams 22, 11071111.CrossRefGoogle Scholar
Zhang, X.P., Wang, T., Li, Z.Q., Liu, J., Qian, B.L. & Zhang, J.D. (2008). Preliminary experimental studies of a dual-band HPM source. Lijiang: Proceedings of the 11th State Conference on High-power Particle Beams.Google Scholar
Zou, X.B., Liu, R., Zeng, N.G., Han, M., Yuan, J.Q., Wang, X.X. & Zhang, G.X. (2006). A pulsed power generator for x-pinch experiments. Laser Part. Beams 24, 503509.CrossRefGoogle Scholar