Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:25:29.187Z Has data issue: false hasContentIssue false

Density diagnostic of highly ionized samarium laser produced plasma using Ni-like spatially resolved spectra

Published online by Cambridge University Press:  05 January 2011

E. Louzon*
Affiliation:
Soreq Research Center, Yavne, Israel
Z. Henis
Affiliation:
Soreq Research Center, Yavne, Israel
I. Levy
Affiliation:
Soreq Research Center, Yavne, Israel
G. Hurvitz
Affiliation:
Soreq Research Center, Yavne, Israel
Y. Ehrlich
Affiliation:
Soreq Research Center, Yavne, Israel
M. Frankel
Affiliation:
Soreq Research Center, Yavne, Israel
S. Maman
Affiliation:
Soreq Research Center, Yavne, Israel
E. Raicher
Affiliation:
Soreq Research Center, Yavne, Israel
A. Malka
Affiliation:
Soreq Research Center, Yavne, Israel
P. Mandelbaum
Affiliation:
Jerusalem College of Engineering, Ramat Beth Hakerem, Jerusalem, Israel
A. Zigler
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem, Israel
*
Address correspondence and reprint requests to: Einat Louzon, Applied Physics Department, Soreq Research Center, Yavne 81800, Israel. E-mail: [email protected]

Abstract

Detailed spectroscopic identification and analysis of lines emitted by Ni-like ions may infer on plasma parameters, such as electron density, temperature, and ionization state. Spatially, resolved X-ray spectra of samarium laser produced plasma were recorded in the 7 to10 Å wavelength range. Measured line intensity ratios of Ni-like 3d-5f, 3p-4d, 3p-4s, and 3s-4p transitions were used for electron density diagnostic as a function of the distance from the target. Calculations using Hebrew University Lawrence Livermore Atomic Code show that these ratios are not very sensitive to the electron temperature in the range from 500 to 1000 eV. Self-absorption of some lines is found to be important at electron densities higher than 1021cm−3. The inferred ranges of electron density and temperature are found to be consistent with results of hydrodynamic simulations and models of ionization in plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T., Magunov, A. & Narayanan, V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part Beams 25, 245.Google Scholar
Aglitskii, E.V., Boiko, V.A., Vinogradov, A.V. & Yukov, E.A. (1974). Diagnostics of dense laser plasmas based on the spectra of hydrogen-like and helium-like multiply charged ions. Sov. J. Quant. Electron. 4, 321.Google Scholar
Bar-Shalom, A., Klapisch, M. & Oreg, J. (2001). HULLAC, an integrated computer package for atomic processes in plasmas. JQSRT 71, 169188.CrossRefGoogle Scholar
Bauche-Arnoult, C., Bauche, J. & Klapish, M. (1979). Variance distribution of energy levels and of the transition arrays in atomic spectra. Phys. Rev. A 20, 24242439.Google Scholar
Gabriel, A.H. (1972). Dielectronic satellite spectra for highly charged helium-like ion lines. Mon. Not. R. Astron. Soc. 160, 99.CrossRefGoogle Scholar
Goldstein, W.H., Oreg, J., Zigler, A., Bar-Shalom, A. & Klapisch, M. (1988). Gain predictions for nickel-like gadolinium from a 181-level multiconfigurational distorted-wave collisional-radiative model. Phys. Rev. A 38, 17971804.CrossRefGoogle ScholarPubMed
Fajardo, M., Audebert, P., Yashiro, H., Gauthier, J.-C-., Chenais-Popovics, C., Renaudin, P., Peyrusse, O., Fortin, X. & Shepherd, R. (2001). Experimental and numerical study of the ionization dynamics of a nanosecond laser-produced aluminum plasma with picosecond resolution. JQSRT 71, 317329.Google Scholar
Foord, M.E., Glenzer, S.H., Thoe, R.S., Wong, K.L., Fournier, K.B., Albritton, J.R., Wilson, B.G. & Springer, P.T. (2000). Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma. JQSRT 65, 231241.Google Scholar
Labate, L., Galimberti, M., Giulietti, A., Gizzi, L.A., Mumico, R. & Salvetti, A. (2001). Line spectroscopy with spatial resolution of laser-plasma X-ray emission. Laser Part. Beams 19, 117.Google Scholar
Labate, L., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A. & Mumico, R. (2002). Analysis of space- resolved X-ray spectra from laser plasmas. Laser Part. Beams 20, 223.Google Scholar
Limpouch, J., Renner, O., Krousky, E., Uschmann, I., Forster, E., Kalashnikov, M.P. & Nickles, P.V. (2002). Line X-ray emission from Al target irradiated by high intensity, variable length laser pulses. Laser Part. Beams 20, 43.Google Scholar
Louzon, E., Henis, Z., Levi, I., Hurvitz, G., Ehrlich, Y., Fraenkel, M., Maman, S. & Mandelbaum, P. (2009). X-ray spectrum in the range (6–12) Å emitted by laser-produced plasma of samarium. JOSA B 26, 959.Google Scholar
Mandelbaum, P., Seely, J.F., Feldman, U., Brown, C.M., Kania, D.R., Goldstein, W.H., Kauffman, R.L., Langer, S. & Bar-Shalom, A. (1992). Density diagnostic of uranium laser produced plasma from the line ratio of Δn = 1 transitions in Ni-like uranium. Phys. Rev. A 45, 7480.Google Scholar
Renaudin, P., Blancard, C., Bruneau, J., Faussurier, G., Fuchs, J.E. & Gary, S. (2006). Absorption experiments on X-ray-heated magnesium and germanium constrained samples. JQSRT 99, 511.Google Scholar
Rubiano, J.G., Florido, R., Bowen, C., Lee, R.W. & Ralchenko, Yu. (2007). Review of the 4th NLTE Code Comparison Workshop. Hi. Energy Density 3, 225232.Google Scholar
Shepherd, R., Audebert, P., Chenais-Popovics, C., Geindre, J.P., Fajardo, M., Iglesias, C., Moon, S., Rogers, F., Gauthier, J.C. & Springer, P. (2001). Absorption of bound states in hot, dense matter. JQSRT 71, 711.CrossRefGoogle Scholar
Welser, L.A., Mancini, R.C., Koch, J.A., Izumi, N., Dalhed, H., Scott, H., Barbee, T.W. Jr., Lee, R.W., Golovkin, I.E., Marshall, F., Delettrez, J. & Klein, L. (2003). Analysis of the spatial structure of inertial confinement fusion implosion cores at OMEGA. JQSRT 81, 487.Google Scholar
Winhart, C., Eidmann, K., Iglesias, C.A., Bar-Shalom, A., Minguez, E., Rickert, A. & Rose, S.J. (1995). XUV opacity measurements and comparison with models. JQSRT 54, 437.Google Scholar
Wyart, J.F., Bauche-Arnoult, C., Gauthier, J.C., Geindre, G.P., Monier, P., Klapisch, M., Bar-Shalom, A. & Cohn, A. (1986). Density sensitive electric quadruple decays in Ni-like ions observed in laser produced plasmas. Phys. Rev. A 34, 701.Google Scholar
Yu, Q.Z., Zhang, J., Li, Y.T., Zhang, Z., Jin, Z., Lu, X., Li, J., Yu, Y.N., Jiang, X.H., Li, W.H. & Liu, S.Y. (2005). Diagnostic of dense plasmas using X-ray spectra. Opt. Com. 256, 470.Google Scholar
Zigler, A., Zmora, H. & Komet, Y. (1977 a). Spatial resolution of X-ray line emission in laser produced plasma by shadow techniques. Phys. Lett. 60A, 319Google Scholar
Zigler, A., Zmora, H., Paiss, Y. & Schwob, J.L. (1977 b). The expansion of a laser-produced aluminum plasma and the heat penetration in multi-layered targets. J. Phys. D: Appl. Phys. 10 L159.Google Scholar
Zigler, A., Givon, M., Yarkoni, E., Kishinevsky, M., Goldberg, E., Arad, B. & Klapish, M. (1987). Use of unresolved transition arrays for plasma diagnostics. Phys. Rev. A 35, 280.Google Scholar