Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T08:02:38.171Z Has data issue: false hasContentIssue false

Demonstration of symcaps to measure implosion symmetry in the foot of the NIF scale 0.7 hohlraums

Published online by Cambridge University Press:  23 January 2009

A. Seifter*
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
G.A. Kyrala
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
S.R. Goldman
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
N.M. Hoffman
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
J.L. Kline
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
S.H. Batha
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
*
Address correspondence and reprint requests to: Achim Seifter, AOT-ABS, MS: H817, Los Alamos National Laboratory, Los Alamos, NM 87545. E-mail: [email protected]

Abstract

Implosions using inertial confinement fusion must be highly symmetric to achieve ignition on the National Ignition Facility. This requires precise control of the drive symmetry from the radiation incident on the ignition capsule. For indirect drive implosions, low mode residual perturbations in the drive are generated by the laser-heated hohlraum geometry. To diagnose the drive symmetry, previous experiments used simulated capsules by which the self-emission X-rays from gas in the center of the capsule during the implosion are used to infer the shape of the drive. However, those experiments used hohlraum radiation temperatures higher than 200 eV (Hauer et al., 1995; Murphy et al., 1998a, 1998b) with small NOVA scale hohlraums under which conditions the symcaps produced large X-ray signals. At the foot of the NIF ignition pulse, where controlling the symmetry has been shown to be crucial for obtaining a symmetric implosion (Clark et al., 2008), the radiation drive is much smaller, reducing the X-ray emission from the imploded capsule. For the first time, the feasibility of using symcaps to diagnose the radiation drive for low radiation temperatures, <120 eV and large 0.7 linear scales NIF Rev3.1 (Haan et al., 2008) vacuum hohlraums is demonstrated. Here we used experiments at the Omega laser facility to demonstrate and develop the symcap technique for tuning the symmetry of the NIF ignition capsule in the foot of the drive pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clark, D.S., Haan, S.W. & Salmonson, J.D. (2008). Robustness studies of ignition targets for the National Ignition Facility in two dimensions. Phys. Plasmas 15, 056305.CrossRefGoogle Scholar
Constantin, C., Dewald, E., Niemann, C., Hoffmann, D.H.H., Udrea, S., Varentsov, D., Jacoby, J., Funk, U.N., Neuner, U. & Tauschwitz, A. (2004). Cold compression of solid matter by intense heavy-ion-beam-generated pressure waves. Laser Part. Beams 22, 5963.CrossRefGoogle Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebvre, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam, deuterium-tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Eliezer, S., Murakami, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Ghoraneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force drive block acceleration. Laser Part. Beams 26, 105111.CrossRefGoogle Scholar
Haan, S.W., Callahan, D.A., Edwards, M.J., Hammel, B.A., Ho, D.D., Jones, O.S., Lindl, J.D., MacGowan, B.J., Marinak, M.M., Munro, D.H., Pollaine, S.M., Salmonson, J.D., Spears, B.K. & Suter, L.J. (2009). Rev3 update of requirements for NIF ignition targets. Fusion Sci. & Techn. In Press.CrossRefGoogle Scholar
Hauer, A.A.Suter, L., Delamater, N., Ress, D., Powers, L., Magelssen, G., Harris, D., Landen, O., et al. (1995). The role of symmetry in indirect-drive laser fusion. Phys. Plasmas 2, 2488.CrossRefGoogle Scholar
Hoffman, N.M., Wilson, D.C., Edwards, M.J., Kalantar, D.H., Kyrala, G.A., Goldman, S.R., Weber, S.V., Izumi, N., Callahan, D.A., Meezan, N., Delamater, N.D., Tregillis, I.L., Schmitt, M.J., Bradley, P.A., Seifter, A., Jones, O.S., Milovitch, J.L. & Thomas, C.A. (2008). Tuning NIF drive symmetry with symmetry capsules. J. Phys. 112, 022075.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D. & Weyrich, K. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Kaw, P.K. & Burkhard, W. (2005). Status report on controlled thermonuclear fusion. Nucl. Fusion 45, A1A28.Google Scholar
Kornblum, H.N., Kauffman, R.L. & Smith, J.A. (1986). Measurement of 0.1–3-keV X-rays from laser plasmas. Rev. Sci. Instrum. 57, 2179.CrossRefGoogle Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Murphy, T.J., Wallace, J.M., Delamater, N.D., Barnes, C.W., Gobby, P., Hauer, A.A., Lindman, E., Magelssen, G., Moore, J.B., Oertel, J.A., Watt, R., et al. (1998 a). Hohlraum symmetry experiments with multiple beam cones on the Omega Laser Facility. Phys. Rev. Lett. 81, 108.CrossRefGoogle Scholar
Murphy, T.J., Wallace, J.M., Delamater, N.D., Barnes, C.W., Gobby, P., Hauer, A.A., Lindman, E.L., Magelssen, G., Moore, J.B., Oertel, J.A., Watt, R., Landen, O.L., Amendt, P., Cable, M., Decker, C., et al. (1998 b). Indirect drive experiments utilizing multiple beam cones in cylindrical hohlraums on OMEGA. Phys. Plasmas 5, 1960.CrossRefGoogle Scholar
Neff, S., Knobloch, R., Hoffmann, D.H.H., Tauschwitz, A. & Yu, S.S. (2006). Transport of heavy-ion beams in a 1 m free-standing plasma channel. Laser Part. Beams 24, 7180.CrossRefGoogle Scholar
Ramis, R., Ramirez, J. & Schurtz, G. (2008). Implosion symmetry of laser-irradiated cylindrical targets. Laser Part. Beams 26, 113126.CrossRefGoogle Scholar
Rodriguez, R., Florido, R., Gil, J.M., Rubiano, J.G., Martel, P. & Minguez, E. (2008). RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature. Laser Part. Beams 26, 433448.CrossRefGoogle Scholar
Romagnani, L., Borghesi, M., Cecchetti, C.A., Kar, S., Antici, P., Audebert, P., Bandhoupadjay, S., Ceccherini, F., Cowan, T., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Heathcote, R., Jung, R., Liseykina, T.V., Macchi, A., Mora, P.,Neely, D., Notley, M., Osterholtz, J., Pipahl, C.A., Pretzler, G., Schiavi, A., Schurtz, G., Toncian, T., Wilson, P.A. & Willi, O. (2008). Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions. Laser Part. Beams 26, 241248.CrossRefGoogle Scholar
Seifter, A. & Kyrala, G.A. (2009). Different methods of reconstructing spectra from filtered X-ray diode measurements. Rev. Sci. Instrum. In Press.Google Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.CrossRefGoogle Scholar
Winterberg, F. (2008). Lasers for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127135.CrossRefGoogle Scholar