Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T01:32:23.414Z Has data issue: false hasContentIssue false

The Current Trends in SBS and phase conjugation

Published online by Cambridge University Press:  30 March 2012

T. Omatsu
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
H.J. Kong*
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
S. Park
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
S. Cha
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
H. Yoshida
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
K. Tsubakimoto
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
H. Fujita
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
N. Miyanaga
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
M. Nakatsuka
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
Y. Wang
Affiliation:
Harbin Institute of Technology, Harbin, China
Z. Lu
Affiliation:
Harbin Institute of Technology, Harbin, China
Z. Zheng
Affiliation:
Harbin Institute of Technology, Harbin, China
Y. Zhang
Affiliation:
Harbin Institute of Technology, Harbin, China
M. Kalal
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, Czech Republic
O. Slezak
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, Czech Republic
M. Ashihara
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
T. Yoshino
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
K. Hayashi
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
Y. Tokizane
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
M. Okida
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
K. Miyamoto
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
K. Toyoda
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
A.A. Grabar
Affiliation:
Uzhgood National University, Ukraine
Md. M. Kabir
Affiliation:
Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
Y. Oishi
Affiliation:
Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
H. Suzuki
Affiliation:
Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
F. Kannari
Affiliation:
Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
C. Schaefer
Affiliation:
National Institute of Information and Communication Technology, Tokyo, Japan
K.R. Pandiri
Affiliation:
University of Electro-Communications, Chofu, Japan
M. Katsuragawa
Affiliation:
University of Electro-Communications, Chofu, Japan
Y.L. Wang
Affiliation:
Harbin Institute of Technology, Harbin, China
Z.W. Lu
Affiliation:
Harbin Institute of Technology, Harbin, China
S.Y. Wang
Affiliation:
Harbin Institute of Technology, Harbin, China
Z.X. Zheng
Affiliation:
Harbin Institute of Technology, Harbin, China
W.M. He
Affiliation:
Harbin Institute of Technology, Harbin, China
D.Y. Lin
Affiliation:
Harbin Institute of Technology, Harbin, China
W.L.J. Hasi
Affiliation:
Harbin Institute of Technology, Harbin, China
X.Y. Guo
Affiliation:
Harbin Institute of Technology, Harbin, China
H.H. Lu
Affiliation:
Harbin Institute of Technology, Harbin, China
M.L. Fu
Affiliation:
Harbin Institute of Technology, Harbin, China
S. Gong
Affiliation:
Harbin Institute of Technology, Harbin, China
X.Z. Geng
Affiliation:
Harbin Institute of Technology, Harbin, China
R.P. Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
P. Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
S. Rajput
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
A.K. Bhardwaj
Affiliation:
N.S.C.B. Government Post Graduate College, Biaora, India
C.Y. Zhu
Affiliation:
Harbin Institute of Technology, Harbin, China
W. Gao
Affiliation:
Department of Optics information Science and Technology, Harbin University of Science and Technology, Harbin, China
*
Address correspondence and reprint requests to: Hong Jim Kong, Department of Physics, KAIST, 373-1 Gusong-dong, Yusong-gu Daejon, Korea305-701. E-mail: [email protected]

Abstract

The current trends in stimulated Brillouin scattering and optical phase conjugation are overviewed. This report is formed by the selected papers presented in the “Fifth International Workshop on stimulated Brillouin scattering and phase conjugation 2010” in Japan. The nonlinear properties of phase conjugation based on stimulated Brillouin scattering and photo-refraction can compensate phase distortions in the high power laser systems, and they will also open up potentially novel laser technologies, e.g., phase stabilization, beam combination, pulse compression, ultrafast pulse shaping, and arbitrary waveform generation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acioli, L.H., Ulman, M., Ippen, E.P., Fujimoto, J.G., Kong, H., Chen, B.S. & Cronin-Golomb, M. (1991). Femtosecond temporal encoding in barium titanate. Opt. Lett. 16, 1984.CrossRefGoogle ScholarPubMed
Afshaavahid, S., Devrelis, V. & Munch, J. (1998). Nature of intensity and phase modulations in stimulated Brillouin scattering. Phy. Rev. A. 57, 3961.CrossRefGoogle Scholar
Akhmanov, A.S., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Soviet. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Albach, D., Arzakantsyan, M., Bourdet, G., Chanteloup, J.-C., Hollander, Ph. & Vincent, B. (2008). Current status of the LUCIA laser system. Phys. 244, 032015.Google Scholar
Andreev, N.F., Bespalov, V.I. & Dvoretsky, M.A. (1989). Phase conjugation of single photons. IEEE J. Q.E. 25, 346350.CrossRefGoogle Scholar
Aschroeder, W., Damzen, M.J. & Hutchinson, M.H.R. (1989). Polarization-decoupled brillouin-enhanced four-wave mixing. IEEE J. Q. E. 25, 460469.CrossRefGoogle Scholar
Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations and structure of the pulse. Laser Part. Beams 25, 339346.CrossRefGoogle Scholar
Bai, J.H., Shi, J.W., Ouyang, M., Chen, X.D., Gong, W.P., Jing, H.M., Liu, J. & Liu, D.H. (2008). Method for measuring the threshold value of stimulated Brillouin scattering in water. Opt. Lett. 33, 15391541.CrossRefGoogle ScholarPubMed
Baldis, H.A., Labaune, C., Moody, J.D., Jalinaud, T. & Tikhonchuk, V.T. (1998). Localization of stimulated Brillouin scattering in random phase plate speckles. Phys. Rev. Lett. 80, 19001903.CrossRefGoogle Scholar
Baldis, H.A., Villeneuve, D.M., Fontaine, B.L., Enright, G.D., Labaune, C., Baton, S., Mounaix, Ph., Pesme, D., Casanova, M. & Rozmus, W. (1993). Stimulated Brillouin scattering in picoseconds time scale: Experiments and modeling. Phys. Fluids B 5, 33193327.CrossRefGoogle Scholar
Barnes, N.P., Storm, M.E., Cross, P.L., Skolaut, M.W. Jr. (1990). Efficiency of Nd laser materials with laser diode pumping. IEEE J. Quan. Electr. 26, 558569.CrossRefGoogle Scholar
Basov, N. & Zubarev, I. (1979). Powerful laser systems with phase conjugation by SMBS mirror. Appl. Phys. 20, 261264.CrossRefGoogle Scholar
Basov, N.G., Zubarev, L.G., Mironov, A.B., Mikhailov, S.I. & Okulov, A.Yu. (1980). Laser interferometer with wave front reversing mirrors. Sov. Phys. JETP 52, 847851.Google Scholar
Batanov, V.A., Goncharov, V.K. & Min'ko, L.Ya. (1972). A high-power laser plasma source. J. Appl. Spectrosc. 16, 695697.CrossRefGoogle Scholar
Baton, S.D., Amiranoff, F., Malka, V., Modena, A., Salvati, M. & Coulaud, C. (1998). Measurement of the stimulated Brillouin scattering from a spatially smoothed laser beam in a homogeneous large scale plasma. Phys. Rev. E 57, R4895R4898.CrossRefGoogle Scholar
Baton, S.D., Rousseaux, C., Mounaix, Ph., Labaune, C., Fontaine, B.La., Pesme, D., Renard, N., Gary, S., Jacquet, M.L. & Baldis, H.A. (1994). Stimulated Brillouin scattering with a 1 ps laser pulse in a performed underdense plasma. Phys. Rev. E 49, 36023605.CrossRefGoogle Scholar
Beak, D.H., Yoon, J.W., Shin, J.S. & Kong, H.J. (2008). Restoration of high spatial frequency at the image formed by stimulated Brillouin scattering with a prepulse. Appl. Phys. Lett. 93, 231113.CrossRefGoogle Scholar
Bel'dyugin, I.M., Efimkov, V.F., Mikhailov, S.I. & Zubarev, I.G. (2005). Amplification of weak stokes signals in the transient regime of stimulated Brillouin scattering. J. Russian Laser Res. 26, 112.CrossRefGoogle Scholar
Bers, A., Shkarofsky, I.P. & Shoucri, M. (2009). Relativistic Landau damping of electron plasma waves in stimulated Raman scattering. Phys. Plasma 16, 022104.CrossRefGoogle Scholar
Betti, R., Zhou, C., Anderson, D.K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.CrossRefGoogle ScholarPubMed
Beyer, O., Breunig, I., Kalkum, F. & Buse, K. (2006). Photorefractive effect in iron-doped lithium niobate crystals induced by femtosecond pulses of 1.5 µm wavelength. Appl. Phys. Lett. 88, 051120.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Futchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Boyd, R.W., Rzazewski, K. & Narum, P. (1990), Noise initiation of stimulated brillouin scattering. Phy. Rev. A 42, 55145521.CrossRefGoogle ScholarPubMed
Brent, D.C., Neuman, W.A. & Hackel, L.A. (1992). Pulse-shape dependence of stimulated-Brillouin-scattering phase-conjugation fidelity for high input energies. Opt. Lett. 17, 1271.Google Scholar
Brignon, A. & Huignard, J.P. (2003). Phase Conjugate Laser Optics. New York: Wiley-Interscience.CrossRefGoogle Scholar
Bruckner, K.A. & Jorna, S. (1974). Laser driven fusion. Rev. Modern Phys. 46, 325367.CrossRefGoogle Scholar
Chalus, O. & Diels, J.C. (2007). Lifetime of fluorocarbon for high energy f stimulated Brillouin scattering. J. Opt. Soc. Am. B 24, 606608.CrossRefGoogle Scholar
Chanteloup, J.-C., Albach, D., Lucianetti, A., Ertel, K., Banerjee, S., Mason, P.D., Hernandez-Gomez, C., Collier, J.L., Hein, J., Wolf, M., Körner, J. & Le Garrec, B.J. (2010). Multi kJ level laser concepts for HiPER facility. J. Phys. 244, 012010.Google Scholar
Chen, W.J., Hsieh, Z.M., Huang, S.W., Su, H.Y., Lai, C.J., Tang, T.T., Lin, C.H., Lee, C.K., Pan, R.P., Pan, C.L. & Kung, A.H. (2008). Sub-single-cycle optical pulse train with constant carrier envelope phase. Phys. Rev. Lett. 100, 163906.CrossRefGoogle ScholarPubMed
Chiao, R.Y., Townes, C.H. & Stoicheff, B.P. (1964). Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592595.CrossRefGoogle Scholar
Chirokikh, A., Seka, W., Simon, A., Craxton, R.S. & Tikhonchuk, V.T. (1998). Stimulated Brillouin scattering in long-scale-length laser plasmas. Phys. Plasmas 5, 11041109.CrossRefGoogle Scholar
Clark, M.G., Disalvo, F.J., Glass, A. M. & Peterson, G.E. (1973). Electronic structure and optical index damage of iron-doped lithium niobate. J. Chem. Phys. 59, 6209.CrossRefGoogle Scholar
Damzen, M., Hutchinson, M. & Schroeder, W. (1987). Direct measurement of the acoustic decay times of hypersonic waves generated by SBS. IEEE J. Quan. Electron. 23, 328334.CrossRefGoogle Scholar
Dane, C.B., Neuman, W.A. & Hackel, L.A. (1992). Pulse-shape dependence of stimulated-Brillouin-scattering phaseconjugation fidelity for high input energies. Opt. Lett. 17, 12711273.CrossRefGoogle ScholarPubMed
Dane, C.B., Neuman, W.A. & Hackel, L.A. (1994 a). High-energy SBS compression. IEEE Quan. Electron. QE-30, 19071915.CrossRefGoogle Scholar
Dane, C.B., Zapata, L.E., Neuman, W.A., Norton, M.A. & Hackel, L.A. (1994 b). Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction. IEEE Quan. Electron. QE-31, 148162.Google Scholar
Daree, K. & Kaiser, W. (1971). Competition between stimulated Brillouin and Rayleigh scattering in absorbing media. Phys. Rev. Lett. 26, 816819.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebrave, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium–tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Dombi, P., Racz, P. & Bodi, B. (2009). Surface plasmon enhanced electron acceleration with few cycle laser pulses. Laser Part. Beams 27, 291296.CrossRefGoogle Scholar
Drake, J.F., Kaw, P.K., Lee, Y.C., Schmidt, G., Liu, C.S. & Rosenbluth, M.N. (1974). Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778785.CrossRefGoogle Scholar
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., Mckenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser solid interactions. Laser Part. Beams 27, 243248.CrossRefGoogle Scholar
Eichler, H.J., Konig, I.R., Piitzold, H.J. & Schwartz, J. (1995). SBS mirrors for XeCl lasers with a broad spectrum. Appl. Phys. B 61, 7380.CrossRefGoogle Scholar
Eliseev, V.V., Rozmus, W., Tikhonchuk, V.T. & Capjack, C.E. (1996). Effect of diffraction on stimulated Brillouin scattering from a single laser hot spot. Phys. Plasmas 3, 37543760.CrossRefGoogle Scholar
Endo, A. (2004). High power laser plasma EUV light source for lithography. Proc. SPIE. 5448, 704711.CrossRefGoogle Scholar
Erokhin, A.I., Kovalev, V.I. & FaïZullov, F.S. (1986). Determination of the parameters of a nonlinear response of liquids in an acoustic resonance region by the method of nondegenerate four-wave interaction. Sov. J. Quan. Electr. 16, 872877.CrossRefGoogle Scholar
Estrabrook, E., Kruer, W.L. & Lasinski, B.F. (1980). Heating by Raman backscatter and forward scatter. Phys. Rev. Lett. 45, 13991403.CrossRefGoogle Scholar
Fernandez, J.C., Cobble, J.A., Failor, B.H., Dubois, D.F., Montgomery, D.S., Rose, H.A., Vu, H.X., Wilde, B.H., Wilde, M.D. & Chrien, R.E. (1996). Observed dependence of stimulated Raman scattering on ion-acoustic damping in hohlraum plasmas. Phys. Rev. Lett. 77, 27022705.CrossRefGoogle ScholarPubMed
Fuchs, J., Labuane, C., Depierreux, D., Baldis, H.A., Michard, A. & James, G. (2001). Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma. Phys. Rev. Lett. 86, 432435.CrossRefGoogle Scholar
Gaeta, A.L. & Boyd, R.W. (1991). Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. Phys. Rev. A 44, 32053209.CrossRefGoogle Scholar
Gao, W., Lu, Z.W., He, W. M., Dong, Y.K. & Hasi, W.L.J. (2009). Characteristics of amplified spectrum of a weak frequencydetuned signal in a Brillouin amplifier. Laser Part. Beams 27, 465470.CrossRefGoogle Scholar
Gao, W., Lu, Z.W., He, W. M., Hasi, W.L.J. & Zhang, Z. (2008). Spectrum evolution of spontaneous and pump-depleted stimulated Brillouin scattering in liquid media. Chin. Phys. 17, 37653770.Google Scholar
Giulietti, A., Macchi, A., Schifano, E., Biancalana, V., Danson, C., Giulietti, D., Gizzi, L.A. & Willi, O. (1999). Stimulated Brillouin scattering from underdense expending plasma in a regime of strong filamentation. Phys. Rev. E 59, 10381046.CrossRefGoogle Scholar
Gong, S., Hasi, W.L.J., Lu, Z.W., Dong, F.L., Lin, D.Y., He, W.M., Zhao, X.Y. & Fan, R.Q. (2009). Study on the choosing principles of SBS new medium perfluoro-compound for phase conjugation mirror and optical limiter. Acta Phys. Sin. 58, 304308.CrossRefGoogle Scholar
Grassi, W. & Testi, D. (2008). Transitional mixed convection in the entrance region of a horizontal pipe. 5th European Thermal-Sciences Conference, Eindhoven, The Netherlands.Google Scholar
Grofts, G.J., Damzen, M.J. & Lamb, R.A. (1991). Experimental and theoretical investigation of two-cell stimulated-Brillouinscattering systems. J. Opt. Soc. Am. B 8, 22822288.CrossRefGoogle Scholar
Han, K.G. & Kong, H.J. (1995). Four-pass amplifier system compensation thermally induced birefringence effect, using a novel dumping mechanism. Jpn. J. Appl. Phys. 34, 994996.CrossRefGoogle Scholar
Hase, M., Itano, T., Mizoguchi, K. & Nakashima, S. (1998). Selective enhancement of coherent optical phonons using THz-rate pulse train. Jpn. J. Appl. Phys. 37, L281L283.CrossRefGoogle Scholar
Hasi, W.L.J., Gong, S., Lu, Z.W., Lin, D.Y., He, W.M. & Fan, R.Q. (2008 b). Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering using medium with short phonon lifetime. Laser Part. Beams 26, 511516.CrossRefGoogle Scholar
Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Lu, Z.W., Lin, D.Y. & He, W.M. (2009 c). Investigation on effect of medium temperature upon SBS and SBS optical limiting. Laser Part. Beams 27, 733737.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Fu, M.L., Lu, H.H., Gong, S., Lin, D.Y. & He, W.M. (2009 a). Improved output energy characteristic of optical limiting based on double stimulated Brillouin scattering. Appl. Phys. B 95, 711714.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Fu, M.L., Lu, H.H., Gong, S., Lin, D.Y. & He, W.M. (2009 b). Investigation of optical limiting based on the combination of stimulated Brillouin scattering and carbon nanotube/HT-270 suspension. Laser Part. Beams 27, 533536.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Gong, S., Li, Q., Lin, D.Y. & He, W.M. (2008 c). Investigation on output energy characteristic of optical limiting based on the stimulated Brillouin scattering. Appl. Phys. B 92, 599602.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Gong, S., Liu, S.J., Li, Q. & He, W.M. (2008 a). Investigation on new SBS media of Perfluorocompound and Perfluoropolyether with low absorption coefficient and high power-load ability. Appl. Opt. 47, 10101014.CrossRefGoogle ScholarPubMed
Hasi, W.L.J., Lu, Z.W., He, W.M. & Wang, S.Y. (2005). Study on Brillouin amplification in different liquid media. Acta Phys. Sin. 54, 742748 (in Chinese).CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007). Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium. Laser Part. Beams 25, 207210.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Liu, S.J., Li, Q., Yin, G.H. & He, W.M. (2008 d). Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering. Appl. Phys. B 90, 503506.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Horowitz, M. & Fischer, B. (1996). Photorefractive effect in a BaTiO3 crystal at the 1.5-μm wavelength regime by two-photon absorption. Opt. Lett. 21, 11201122.CrossRefGoogle Scholar
Hüller, S. (1991). Stimulated Brillouin scattering off non-linear ion acoustic waves. Phys.Fluids B 3, 33173330.CrossRefGoogle Scholar
Hüller, S., Masson-Laborde, P.E., Pesme, D., Labaune, C. & Bandulet, H. (2008). Modeling of stimulated Brillouin scattering in expanding plasma. J. Phys. 112, 022031.Google Scholar
Ikesue, A. (2002). Polycrystalline Nd:YAG ceramics lasers. Opt. Mater. 19, 183187.CrossRefGoogle Scholar
Jain, R.K. & Stenersen, K. (1984). Picosecond pulse operation of a dye laser containing a phase-conjugate mirror. Opt. Lett. 9, 546.CrossRefGoogle ScholarPubMed
Jakeman, E. & Ridely, K.D. (1996). Incomplete phase conjugation through a random phase screen. I. Theory. J. Opt. Soc. Am. A 13, 22792287.CrossRefGoogle Scholar
Jermann, F., Simon, M. & Krätzig, E. (1995). Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities. J. Opt. Soc. Am. B 12, 2066.CrossRefGoogle Scholar
Jiang, Z., Huang, C.-H., Leaird, D.E. & Weiner, A.M. (2007). Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat. Photon. 1, 463467.CrossRefGoogle Scholar
Jin, F. & Richardson, M. (1995). New laser plasma source for extreme-ultraviolet lithography. Appl. Opt. 34, 57505760.CrossRefGoogle ScholarPubMed
Joubert, C., Roblin, M.L. & Grousson, R. (1989). Temporal reversal of picosecond optical pulses by holographic phase conjugation. Appl. Opt. 28, 4604.CrossRefGoogle ScholarPubMed
Kalal, M., Kong, H.J., Martinkova, M., Slezak, O. & Yoon, J.W. (2008 a), Current status of designing SBS PCM based IFE driver. 30th European Conference on Laser Interaction with Matter. August 31-September 5, Darmstadt, Germany.Google Scholar
Kalal, M., Kong, H.J., Martinkova, M., Slezak, O. & Yoon, J.W. (2010 a). SBS PCM technique applied for aiming at IFE pellets: First tests with amplifiers and harmonic conversion. J. Kor. Phys. Soc. 56, 184189.CrossRefGoogle Scholar
Kalal, M., Kong, H.J., Slezak, O. & Yoon, J.W. (2008 b). Some issues in development of SBS PCM based IFE driver. 3rd Workshop on SBS and Phase Conjugation. August 25-26, Harbin, China.Google Scholar
Kalal, M., Kong, H.J., Slezak, O., Koresheva, E.R., Park, S. & Startsev, S.A. (2010 b). Recent Progress Made in the SBS PCM Approach to Self-navigation of Lasers on Direct Drive IFE Targets. J. Fusion Ener. 29, 527531.CrossRefGoogle Scholar
Kalal, M., Kong, J.H. & Alexander, N.B. (2007 a). Consideration of SBS PCM technique for self-aiming of laser fusion drivers on IFE targets proposal and feasibility study. 3rd International Conference on the Frontiers of Plasma Physics and Technology. March 5–9, Bangkok, Thailand.Google Scholar
Kalal, M., Martinkova, M., Slezak, O., Kong, H.J. & Alexander, N.B. (2007 b). SBS PCM technique and its possible role in achieving IFE objectives. J. Phys. 112, 032049.Google Scholar
Kanaka, , Raju, P., Suzuki, T., Suda, A., Midorikawa, K. & Katsuragawa, M. (2010). Line-by-line control of 10-THz-frequency spacing Raman sidebands. Opt. Expr. 18, 732739.Google Scholar
Kappe, P., Strasser, A. & Ostermeyer, M. (2007). Investigation of the impact of SBS- parameters and loss modulation on the mode locking of an SBS-laser oscillator. Laser Part. Beams 25, 107116.CrossRefGoogle Scholar
Katsuragawa, M. & Onose, T. (2005). Dual-wavelength injection-locked pulsed laser. Opt. Lett. 30, 24212423.CrossRefGoogle ScholarPubMed
Katsuragawa, M., Yokoyama, K., Onose, T. & Misawa, K. (2005). Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands. Opt. Expr. 13, 56285634.CrossRefGoogle ScholarPubMed
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 15221525.CrossRefGoogle Scholar
Kawanaka, J., Takeuchi, Y., Yoshida, A., Pearce, S. J., Yasuhara, R., Kawashima, T. & Kan, H. (2010). Highly efficient cryogenically-cooled Yb:YAG laser. Laser Phys. 20, 10791084.CrossRefGoogle Scholar
Kline, J.L., Montgomery, D.S., Rousseaux, C., Baton, S.D., Tassin, V., Hardin, R.A., Flippo, K.A., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Rose, H.A. & Amiranoff, F. (2009). Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold. Laser Part. Beams 27, 185190.CrossRefGoogle Scholar
Kmetik, V., Fiedorowics, H., Andreev, A.A., Witte, K.J., Daido, H., Fujita, H., Nakatsuka, M. & Yamanaka, T. (1998). Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz. Appl. Opt. 37, 70857090.CrossRefGoogle ScholarPubMed
Kong, H.J., Beak, D.H., Lee, D.W. & Lee, S.K. (2005 a). Wave form preservation of the backscattered stimulated Brillouin scattering wave by using a Pre-pulse injection. Opt. Lett. 30, 34013403.CrossRefGoogle Scholar
Kong, H.J., Lee, J.Y., Shin, Y.S., Byun, J.O., Park, H.S. & Kim, H. (1997). Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation. Opt. Rev. 4, 277283.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 b). Beam combined laser fusion driver with high power and high repetition rate using stimulated Brillouin scattering phase conjugation mirrors and self-phase-locking. Laser Part. Beams 23, 5559.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 c). Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Lasers Part. Beams 23, 107111.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K., Lee, D.W. & Guo, H. (2005 d). Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation. Appl. Phys. Lett. 86, 051111.CrossRefGoogle Scholar
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.H. (2009 a). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors. Laser Part. Beams 27, 179184.CrossRefGoogle Scholar
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.H. (2009 b). Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors. Nucl. Fusion 49, 125002.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007 a). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 114.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007 b). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Shin, J.S. & Beak, D.H. (2008). Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl. Phys. Lett. 92, 021120,CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Shin, J.S., Beak, D.H. & Lee, B.J. (2006). Long-term stabilization of the beam combination laser with a phase controlled mirror for laser fusion driver. Laser Part. Beams 24, 519523.CrossRefGoogle Scholar
Kovalev, V.I. & Harrison, R.G. (2007). Threshold for stimulated Brillouin scattering in optical fiber. Opt. Expr. 15, 1762517630.CrossRefGoogle ScholarPubMed
Kovalev, V.I., Kotova, N.E. & Harrison, R.G. (2009). “Slow Light” in stimulated Brillouin scattering: On the influence of the spectral width of pump radiation on the group index. Opt. Expr. 17, 1731717323.CrossRefGoogle ScholarPubMed
Krall, N.A. & Trivelpiece, A.W. (1973). Principle of Plasma Physics. Tokyo: McGraw Hill-Kogakusha.CrossRefGoogle Scholar
Kruer, W.L. (2000). Interaction of plasmas with intense laser. Phys. Plasma 7, 22702278.CrossRefGoogle Scholar
Lagemann, R.T., Woolf, W.E., Evans, J.S. & Underwood, N. (1948). Ultrasonic Velocity in Some Liquid Fluorocarbons. J. Am. Chem. Soc. 70, 29942996.CrossRefGoogle Scholar
Lanzerotti, M.Y., Schirmer, R.W. & Gaeta, A.L. (1996). Phase conjugation of weak continuous-wave optical signals. Phys. Rev. Lett. 77, 22022205.CrossRefGoogle ScholarPubMed
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2008). Angular distribution of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.CrossRefGoogle Scholar
Lee, S., Choi, D., Kim, C. J. & Zhou, J. (2007), Highly efficient diode side-pumped Nd:YAG ceramic laser with 210 W output power Opt. Laser Techn. 39, 705709.CrossRefGoogle Scholar
Lee, S.K., Kong, H.J. & Nakatsuka, M. (2005 a). Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies. Appl. Phys. Lett. 87, 161109.CrossRefGoogle Scholar
Lee, S.K., Lee, D.W. & Kong, H.J. (2005 b). Stimulated Brillouin scattering by a multimode pump with alarge number of longitudinal modes. J. Korean Phys. Soc. 46, 443447.Google Scholar
Levis, R.J., Menkir, G.M. & Rabitz, H. (2001). Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Sci. 292, 709713.CrossRefGoogle ScholarPubMed
Liang, J.Q., Katsuragawa, M., Kien, F.L. & Hakuta, K. (2000). Sideband generation using strongly driven Raman coherence in solid hydrogen. Phys. Rev. Lett. 85, 24742477.CrossRefGoogle ScholarPubMed
Limpert, J., Deguil-Robin, N., Manek-Hönninger, I., Salin, F., Röser, F., Liem, A., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., Broeng, J., Petersson, A. & Jakobsen, C. (2005). High-power rod-type photonic crystal fiber laser. Opt. Exp. 13, 10551058.CrossRefGoogle ScholarPubMed
Loree, T.R., Watkins, D.E., Johnson, T.M., Kurnit, N.A. & Fisher, R.A. (1987). Phase locking two beams by means of seeded Brillouin scattering. Opt. Lett. 12, 178180.CrossRefGoogle ScholarPubMed
Lu, Z.W., Dong, Y.K. & Li, Q. (2007). Slow light in multi-line Brillouin gain spectrum. Opt. Exp. 15, 18711877.CrossRefGoogle ScholarPubMed
Lu, Z.W., Gao, W., He, W.M., Zhang, Z. & Hasi, W.L.J. (2009). High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier. Opt. Expr. 17, 1067510680.CrossRefGoogle ScholarPubMed
Maier, M. & Renner, G. (1971). Transient and quasistationary stimulated scattering of light. Opt. Commun. 3, 301304.CrossRefGoogle Scholar
Mao, J.S., Zhao, J.Y., Li, Y.D., Xie, A.G., Fang, Z.S., Sannikov, V. & Gorshkov, A. (2001). HT-7 multipoint Nd laser Thomson scattering apparatus. Plasma Sci. Techn. 3, 691702.Google Scholar
Masse, J.E. & Barreau, G. (1995). Laser generation of stress waves in metal. Surf. Coatings Techn. 70, 231234.CrossRefGoogle Scholar
McCrory, R.L., Meyerhofer, D., Betti, D.R., Craxton, R., Delettrez, S.J.A., Edgell, D.H., Glebov, V.Yu., Goncharov, V.N., Harding, D.R., Jacobs-Perkins, D.W., Knauer, J.P., Mars Hall, F.J., Mckenty, P.W., Radha, P.B., Regan, S.P., Sangster, T.C., Seka, W., Short, R.W., Skupsky, S., Smalyuk, V.A., Soures, J.M., Stoeckl, C., Yaakobi, B., Shvarts, D., Frenje, J.A., Li, C.K., Petrasso, R.D. & Séguin, F.H. (2008). Progress in direct-drive inertial confinement fusion. Phys. Plasmas 15, 055503.CrossRefGoogle Scholar
Meister, S., Riesbeck, T. & Eichler, H.J. (2007). Glass fibers for stimulated Brillouin scattering and phase conjugation. Laser Part. Beams 25, 1521.CrossRefGoogle Scholar
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns-MJ laser pulses. Laser Part. Beams 23, 453460.CrossRefGoogle Scholar
Mitra, A., Yoshida, H., Fujita, H. & Nakatsuka, M. (2006). Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an Integrated set-up with laser energy up to 1.5 J. Jpn. J. Appl. Phys. 45, 16071611.CrossRefGoogle Scholar
Miyamoto, R.Y. & Itoh, T. (2002) Retro directive arrays for wireless communications. IEEE Microwave Mag. 3, 6772.CrossRefGoogle Scholar
Moses, E.I (2009). Ignition on the National Ignition Facility: A path towards inertial fusion energy. Nucl. Fusion 49, 104022.CrossRefGoogle Scholar
Myatt, J., Pesme, D., Huller, S., Maximov, A.V., Rozmus, W. & Capjack, C.E. (2001). Nonlinear propagation of a randomized laser beam through an expanding plasma. Phys. Rev. Lett. 87, 255003.CrossRefGoogle ScholarPubMed
Omatsu, T., Minassian, A. & Damzen, M.J. (2002). High quality 7.5 W continuous-wave operation of a Nd:YVO4 laser with a Rh:BaTiO3 phase conjugate mirror. Jpn. J. Appl. Phys. 41, 20242027.CrossRefGoogle Scholar
Ostermeyer, M., Kong, H.J., Kovalev, V.I., Harrison, R.G., Fotiadi, A.A., Megret, P., Kalal, M., Slezak, O., Yoon, J.W., Shin, J.S., Beak, D.H., Lee, S.K., Lu, Z., Wang, S., Lin, D., Knight, J.C., Kotova, N.E., Straber, A., Scheikhobeid, A., Riesbeck, T., Meister, S., Eichler, H.J., Wang, Y., He, W., Yoshida, H., Fujita, H., Nakatsuka, M., Hatae, T., Park, H., Lim, C., Omatsu, T., Nawata, K., Shiba, N., Antipov, O.L., Kuznetsov, M.S. & Zakharov, N.G. (2008). Trends in stimulated Brillouin scattering and optical phase conjugation. Laser Part. Beams 26, 297362.CrossRefGoogle Scholar
Ozoki, T., Bom Elouga, L.B., Ganeev, R., Kieffer, J.C., Sazuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Park, H., Lim, C., Yoshida, H. & Nakatsuka, M. (2006). Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids. Jpn. J. Appl. Phys. 45, 50735075.CrossRefGoogle Scholar
Pettazzi, F., Alonzo, M., Centini, M., Petris, A., Vlad, V. I., Chauvet, M. & Fazio, E. (2007). Self-trapping of low-energy infrared femtosecond beams in lithium niobate. Phys. Rev. A. 76, 063818.CrossRefGoogle Scholar
Pohl, D. & Kaiser, W. (1970). Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: Determination of phonon lifetimes. Phys. Rev. B 1, 3143.CrossRefGoogle Scholar
Roblin, M.L., Gires, F., Grousson, R. & Lavallard, P. (1987). Enregistrement par holographie de volume d'une loi de phase spectrale: Application a la compression d'impulsion picoseconde. Opt. Commun. 62, 209.CrossRefGoogle Scholar
Rockwell, D.A. (1988). A review of phase-conjugate solid-state lasers IEEE J. Quan. Electron. 24, 11241140.CrossRefGoogle Scholar
Rosas, E., Aboites, V. & Damzen, M.J. (1998). Transient evolution and spatial mode size analysis of adaptive laser oscillators. Opt. Commun. 156, 419425.CrossRefGoogle Scholar
Rozmus, W., Sharma, R.P., Samson, J.C. & Tighe, W. (1987). Nonlinear evolution of stimulated Raman scattering in homogeneous plasmas. Phys Fluids 30, 21812193.CrossRefGoogle Scholar
Salamin, Y.I., Harman, Z. & Keitel, C.H. (2008). Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett. 100, 155004.CrossRefGoogle ScholarPubMed
Salamin, Y.I., Hu, S.X., Hatsagortsyan, K.Z. & Keitel, C.H. (2006). Relativistic high-power laser–matter interactions. Phys. Rept. 427, 41155.CrossRefGoogle Scholar
Schäfer, C.A. (2010). Continuous adaptive beam pointing and tracking for laser power transmission. Opt. Expr. 18, 1345113468.CrossRefGoogle ScholarPubMed
Schiemann, S., Ubachs, W. & Hogervorst, W. (1997). Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup. IEEE J. Quan. Electron. 33, 358366.CrossRefGoogle Scholar
Scott, A.M. & Ridley, K.D. (1989). A review of Brillouin enhanced four-wave mixing. IEEE J. Q.E. 25, 438459.CrossRefGoogle Scholar
Sen, P. & Sen, K. (1986). Correlation and competition between stimulated Raman and Brillouin scattering processes. Phys. Rev. B. 33, 14271429.CrossRefGoogle ScholarPubMed
Shahraam, A., Vladimyros, D. & Jesper, M. (1998). Nature of intensity and phase modulations in stimulated Brillouin scattering. Phys. Rev. A. 57, 39613971.Google Scholar
Shin, J.S., Park, S. & Kong, H.J. (2010 a), Compensation of the thermally induced depolarization in a double-pass Nd:YAG rod amplifier with a stimulated Brillouin scattering phase conjugate mirror. Opt. Commun. 283, 24022405.CrossRefGoogle Scholar
Shin, J.S., Park, S., Kong, H.J. & Yoon, J.W. (2010 b). Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors. Appl. Phys. Lett. 96, 131116.CrossRefGoogle Scholar
Shuangyi, W., Zhiwei, L., Dianyang, L., Lei, D. & Dongbin, J. (2007). Investigation of serial coherent laser beam combination based on Brillouin amplification. Laser Part. Beams 25, 7983.Google Scholar
Shverdin, M.Y., Walker, D.R., Yavuz, D.D., Yin, G.Y. & Harris, S.E.. (2005). Generation of a single-cycle optical pulse. Phys. Rev. Lett. 94, 033904033907.CrossRefGoogle ScholarPubMed
Siegman, A.E. (1986). Lasers. Mill Valley: University Science Books.Google Scholar
Sodha, M.S., Mishra, S.K. & Mishra, S. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. E 3, 169265.CrossRefGoogle Scholar
Sokolov, A.V., Walker, D.R., Yavuz, D.D., Yin, G.Y. & Harris, S.E. (2000). Raman generation by phased and anti phased molecular states. Phys. Rev. Lett. 85, 562565.CrossRefGoogle Scholar
Spalding, I.J. (1978). High power lasers next term for previous term processing of materials next term — A comparison of available systems. Opt. Laser Techn. 10, 2932.CrossRefGoogle Scholar
Steinsiek, F., Foth, W.P., Weber, K.H., Schäfer, C.A. & Foth, H.J. (2003). Wireless power transmission experiment as an early contribution to planetary exploration missions. Proc. 54th International Astronautical Congress, IAC-03-R.3.06. Bremen, Germany.CrossRefGoogle Scholar
Sternklar, S., Glick, Y. & Jackel, S. (1992). Noise limitations of Brillouin two-beam coupling: theory and experiment. J. Opt. Soc. Am. B. 9, 391397.CrossRefGoogle Scholar
Suda, A., Oishi, Y., Nagasaka, K., Wang, P. & Midorikawa, K. (2001). A spatial light modulator based on fused-silica plates for adaptive feedback control of intense femtosecond laser pulses. Opt. Expr. 9, 26.CrossRefGoogle ScholarPubMed
Sumiyoshi, T., Sekita, H., Arai, T., Sato, S., Ishihara, M. & Kikuchi, M. (1999). High-power continuous-wave 3- and 2-μm cascade Ho3+: ZBLAN fiber laser and its medical applications. IEEE J. Quan. Electron. 5, 936943.CrossRefGoogle Scholar
Suzuki, T., Hirai, M. & Katsuragawa, M. (2008 a). Octave-spanning Raman comb with carrier envelope offset control. Phys. Rev. Lett. 101, 243602.CrossRefGoogle ScholarPubMed
Suzuki, T., Sawayama, N. & Katsuragawa, M. (2008 b). Spectral phase measurements for broad Raman sidebands by using spectral interferometry. Opt. Lett. 33, 28092811.CrossRefGoogle ScholarPubMed
Tajima, T. & Dawson, J.M. (1979). Laser electron Accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Tesla, N. (1904). The transmission of electrical energy without wires. Elec. World Eng. 35, 429431.Google Scholar
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.CrossRefGoogle Scholar
Udaiyan, D., Crofts, G.J., Omatsu, T. & Damzen, M.J. (1998). Self-consistent spatial mode analysis of self-adaptive laser oscillators. J. Opt. Soc. Am. B 15, 13461352.CrossRefGoogle Scholar
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.CrossRefGoogle Scholar
Von Der Linde, D., Glass, A.M. & Rodgers, K.F. (1974). Multiphoton photorefractive processes for optical storage in LiNbO3. Appl. Phys. Lett. 25, 155157.CrossRefGoogle Scholar
Wang, S.Y., Lu, Z.W., Lin, D.Y., Ding, L. & Jiang, D.B. (2007). Investigation of serial coherent laser beam combination based on Brillouin amplification. Laser Part. Beams 25, 7983.CrossRefGoogle Scholar
Wang, Y.L., Lu, Z.W., He, W.M., Zheng, Z.X. & Zhao, Y.H. (2009 a). A new measurement of stimulated Brillouin scattering phase conjugation fidelity for high pump energies. Laser Part. Beams 27, 297302.CrossRefGoogle Scholar
Wang, Y.L., Lu, Z.W., Li, Y., Wu, P., Zheng, Z.X. & He, W.M. (2010). Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror. Appl. Phys. B 98, 391395.CrossRefGoogle Scholar
Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M. & Lin, D.Y. (2009 b). Investigation on efficiency of non-collinear serial laser beam combination based on Brillouin amplification. Laser Part. Beams 27, 651655.CrossRefGoogle Scholar
Weaver, M.A.S.E. (2009). Efficient cooling of lasers, LEDs and photonics devices. Patent (IPC8 Class: AF21V2900FI).Google Scholar
Yang, A.L., Yang, J.G., Ding, L., Li, M.Z., Zhang, X.M. & Mang, Y.Z. (2001). Phase Jump in the Process of Stimulated Brillouin Scattering. Chinese J. Lasers 28, 732734.Google Scholar
Yao, X.S. & Feinberg, J. (1993). Temporal shaping of optical pulses using beam coupling in a photorefractive crystal. Opt. Lett. 18, 622.CrossRefGoogle Scholar
Yasuhara, R., Kawashima, T., Sekine, T., Kurita, T., Ikegawa, T., Matsumoto, O., Miyamoto, M., Kan, H., Yoshida, H., Kawanaka, J., Nakatsuka, M., Miyanaga, N., Izawa, Y. & Kanabe, T. (2008). 213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror. Opt. Lett. 33, 17111713.CrossRefGoogle ScholarPubMed
Yau, H., Wang, P., Pan, E., Chen, J. & Chang, J.Y. (1997). Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3. Opt. Commun. 135, 331.CrossRefGoogle Scholar
Yoon, J.W., Shin, J.S., Kong, H.J. & Lee, J. (2009). Investigation of the relationship between the prepulse energy and the delay time in the waveform preservation of a stimulated Brillouin scattering wave by prepulse injection. J. Opt. Soc.Am. B 26.CrossRefGoogle Scholar
Yoshida, H., Fujita, H., Nakatsuka, M. & Fujinoki, A. (2004). Temporal Compression by Stimulated-Brillouin-Scattering of Q-switched Pulse with Fused Quartz Glass. Jpn. J. Appl. Phys. 43, 11031105.CrossRefGoogle Scholar
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (1999). High resistant phase-conjugated stimulated Brillouin scattering mirror using fused-silica glass for Nd:YAG laser system. Jpn. J. Appl. Phys. 38, 521523.CrossRefGoogle Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Fujinoki, A. & Yoshida, K. (2003). Fused-quartz glass with low optical quality as a high damage-resistant stimulated Brillouin-scattering phase-conjugation mirror. Opt. Commun. 222, 257267.CrossRefGoogle Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25, 481488.CrossRefGoogle Scholar
Yoshida, H., Hatae, T., Fujita, H., Nakatsuka, M. & Kitamura, S. (2009). A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt. Expr. 17, 1365413662.CrossRefGoogle ScholarPubMed
Yoshida, H., Hataeh, T., Fujita, H., Nakatsuka, M. & Kitamura, S. (2010). A High-energy 160-ps Pulse Generation by Stimulated Brillouin Scattering from Heavy Fluorocarbon Liquid at 1064 nm Wavelength. Opt. Expr. 17, 1365413662.CrossRefGoogle Scholar
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., T. Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.CrossRefGoogle ScholarPubMed
Young, P.E., Baldis, H.A., Drake, R.P., Campbell, E.M. & Estrabrook, K.G. (1988). Direct evidence of ponderomotive Filamentation in laser-produced plasma. Phys. Rev. Lett. 61, 23362339.CrossRefGoogle ScholarPubMed
Zel'dovich, B.Ya., Pilipetskii, N.F. & Shkunov, V.V. (1982). Phase conjugation in stimulated scattering. Sov. Phys. Usp. 25, 713737.CrossRefGoogle Scholar
Zel'dovich, B.Ya., Popovichev, V.I., Ragulsky, V.V. & Faizullov, F.S. (1972). Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtam Brillouin scattering. Sov. Phys. JETP 15, 109112.Google Scholar
Zheng, W., Zhang, X., Wei, X., Jing, F., Sui, Z., Zheng, K., Yuan, X., Jiang, X., Su, J., Zhou, H., Li, M., Wang, J., Hu, D., He, S., Xiang, Y., Peng, Z., Feng, B., Guo, L., Li, X., Zhu, Q., Yu, H., You, Y., Fan, D. & Zhang, W. (2008), Status of the SG-III solid-state laser facility, Journal of Physics: Conference Series 112 032009Google Scholar
Zhou, B., Kane, T. J., Dixon, G. J. & Byer, R.L. (1985). Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Opt. Lett. 10, 6264.CrossRefGoogle ScholarPubMed
Zhu, C.Y., Lu, Z.W., He, W.M., Ba, D.X., Wang, Y., Gao, W. & Dong, Y.K. (2007). Theoretical study on temporal behavior of Brillouin-enhanced four-wave mixing. Acta Phys. Sin. (in Chinese) 56, 229235.Google Scholar
Zhu, C.Y., Lu, Z.W., He, W.M., Guan, J. & Xu, X.C. (2008). Brillouin-enhanced four-wave mixing phase conjugation mirror with large signals. Chinese J. Lasers 35, 845848 (in Chinese).Google Scholar