Article contents
Correlation analysis of intense ion beam energy in a self magnetically insulated diode
Published online by Cambridge University Press: 01 April 2014
Abstract
This paper presents the results of a statistical and correlation analysis of the energy and energy density of an ion beam formed by a self-magnetically insulated diode with an explosive emission cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: plasma formation occurs during the first pulse (negative polarity, 300–500 ns, 100–150 kV), and ion extraction and acceleration during the second pulse (positive polarity, 120 ns, 250–300 kV). Various arrangements of diodes have been investigated: strip focusing and planar diodes, a conical focusing diode and a spiral diode. The total ion beam energy was measured using both a calorimeter and an infrared camera and the beam energy density was measured by the thermal imaging and acoustic diagnostics. The correlation analysis showed that ion current density is only weakly dependent on the accelerating voltage and other output parameters of the accelerator, with the coefficient of determination <0.3. At the same time, in this paper, we have identified that the total energy of the beam and the energy density is strongly dependant on the accelerator output parameters, since the coefficient of determination >0.9. The mechanism governing stabilization of the beam energy density from shot to shot was discovered and attributed to formation of the neutral component in ion beam as being due to charge exchange between accelerated ions and neutral molecules from a neutral layer near the anode surface. Implementation using a self-magnetically insulated diode with an explosive-emission cathode, having an operational lifetime of up to 106 shots, has promising prospects for various technological applications.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2014
References
REFERENCES
- 6
- Cited by