Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:29:59.802Z Has data issue: false hasContentIssue false

Core holes, charge disorder, and transition from metallic to plasma properties in ultrashort pulse irradiation of metals

Published online by Cambridge University Press:  06 March 2006

DIMITRI V. FISHER
Affiliation:
Plasma Physics Department, Soreq NRC, Yavne, Israel
ZOHAR HENIS
Affiliation:
Plasma Physics Department, Soreq NRC, Yavne, Israel
SHALOM ELIEZER
Affiliation:
Plasma Physics Department, Soreq NRC, Yavne, Israel
JUERGEN MEYER-TER-VEHN
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany

Abstract

We study the details of a gradual change in electron properties from those of a nearly-free-electron (NFE) metal to those of a strongly-coupled plasma, in ultrashort pulse energy deposition in solid metal targets. Time scales shorter than those of a target surface layer expansion are considered. Both the case of an optical laser (visible or near infrared wavelengths range) and of a free electron laser (vacuum ultraviolet or X-ray) are treated. The mechanisms responsible for the change in electron behavior are isochoric melting, lattice charge disordering, and electron mean free path reduction. We find that the transition from metal to plasma usually occurs via an intermediate stage of a charge-disordered solid (solid plasma), in which ions are at their lattice sites but the ionization stages of individual ions differ due to ionization from localized bound states. Charge disordered state formation is very rapid (typically, few femtoseconds or few tens of femtoseconds). Pathway to charge-disordered state differs in simple metals and in noble metals. Probabilities are derived for electron impact ionization and 3-body recombination of a bound ionic state in solid-density medium, applicable both in metal and in plasma regime. An evolution of energy coupling between electron and ion subsystems, from metallic electron-phonon (e-ph) to plasma electron-ion (e-i) coupling, is considered. Substantial increase in coupling parameter is expected as a result of charge disorder.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrikosov, A.A. (1972). Introduction to the Theory of Normal Metals. New York: Academic Press.
Alesini, D., Bertolucci, S., Biagini, Boni, R., Boscolo, M. et al. (2004). The SPARC/X SASE-FEL projects. Laser Part. Beams 22, 341350.Google Scholar
Almbladh, C.-O., Morales, A.L. & Grossmann, G. (1989). Theory of Auger core-valence-valence processes in simple metals. I. Total yields and core-level lifetime widths. Phys. Rev. B 39, 34893502.Google Scholar
Anisimov, S.I., Bonch-Bruevich, A.M., El.yashevich, M.A., Imas, Ya.A., Pavlenko, N.A. & Romanov, G.S. (1967). The action of powerful light on metals. Sov. Phys. Tech. Phys. 11, 945952.Google Scholar
Anisimov, S.I., Kapeliovich, B.L. & Perelman, T.L. (1974). Electron emission from the surface of metals under the action of ultrashort laser pulses. Sov. Phys. JETP 39, 375377.Google Scholar
Ashcroft, N.W. & Sturm, K. (1971). Interband absorption and the optical properties of polyvalent metals. Phys. Rev. B 3, 18981910.Google Scholar
Ashitkov, S.I., Agranat, M.B., Kondratenko, P.S., Anisimov, S.I., Fortov, V.E., Temnov, V.V., Sokolowski-Tinten, K., Rethfeld, B., Zhou, P. & von der Linde, D. (2002). Ultra-fast laser-induced phase transitions in tellurium. JETP Lett. 76, 461464.Google Scholar
Bennemann, K.H. (2004). Ultrafast dynamics in solids. J. Phys. Cond. Matt. 16, R995R1056.Google Scholar
Braginskii, S.I. (1965). Transport processes in a plasma. In Reviews of Plasma Physics, vol. 1. New York: Consultants Bureau.
Campillo, I., Silkin, V.M., Pitarke, J.M., Chulkov, E.V., Rubio, A. & Echenique, P.M. (2000). First-principles calculations of hot-electron lifetimes in metals. Phys. Rev. B 61, 1348413492.Google Scholar
Cavalleri, A., Siders, C.W., Rose-Petruck, C., Jimenez, R., Toth, Cs., Squier, J.A., Barty, C.P.J., Wilson, K.R., Sokolowski-Tinten, K., Horn von Hoegen, M., von der Linde, D. (2001). Ultrafast x-ray measurement of laser heating in semiconductors: Parameters determining the melting threshold. Phys. Rev. B 63, 193306.Google Scholar
Citrin, P.H., Wertheim, G.K. & Schlueter, M. (1979). One-electron and many-body effects in X-ray absorption and emission edges of Li, Na, Mg, and Al metals. Phys. Rev. B 20, 30673114.Google Scholar
Dumitrica, T. & Allen, R.E. (2002). Nonthermal transition of GaAs in ultra-intense laser radiation field. Laser Part. Beams 20, 237242.Google Scholar
DeCamp, M.F., Reis, D.A., Bucksbaum, P.H. & Merlin, R. (2001). Dynamics and coherent control of high-amplitude optical phonons in bismuth. Phys. Rev. B 64, 092301.Google Scholar
Dharma-wardana, M.W.C. & Perrot, F. (1998). Energy relaxation and the quasiequation of state of a dense two-temperature nonequilibrium plasma. Phys. Rev. E 58, 37053718.Google Scholar
Dharma-wardana, M.W.C. & Perrot, F. (2001). Erratum. Phys. Rev. E 63, 069901.Google Scholar
Eidmann, K., Meyer-ter-Vehn, J., Schlegel, T. & Hueller, S. (2000). Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E 62, 12021214.Google Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Bristol: IoP Publications.
Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S., Ezersky, V. & Eliezer, D. (2005). Nanoparticles and nanotubes induced by femtosecond lasers. Laser Part. Beams 23, 1519.Google Scholar
Elsayed-Ali, H.E., Norris, T.B., Pessot, M.A. & Mourou, G.A. (1987). Time-resolved observation of electron-phonon relaxation in copper. Phys. Rev. Lett. 58, 12121215.Google Scholar
Fermi, E. (1940). The ionization loss of energy in gases and in condensed materials. Phys. Rev. 57, 485493.Google Scholar
First, P.N., Fink, R.L. & Flynn, C.P. (1988). Emission spectra and core-hole lifetimes from anomalous X-ray edges in alloys. Phys. Rev. Lett. 60, 952955.Google Scholar
Fisher, D., Fraenkel, M., Henis, Z., Moshe, E. & Eliezer, S. (2002). Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum. Phys. Rev. E 65, 016409.Google Scholar
Fisher, D., Fraenkel, M., Zinamon, Z., Henis, Z., Moshe, E., Horovitz, Y.,Luzon, E., Maman, S., &Eliezer, S. (2004) in ECLIM-XXVIII proceedings, Rome, 2004.
Fisher, D., Fraenkel, M., Zinamon, Z., Henis, Z., Moshe, E., Horovitz, Y., Luzon, E., Maman, M. & Eliezer, S. (2005a). Intraband and interband absorption of femtosecond laser pulses in copper. Laser Part. Beams 23, 391393.Google Scholar
Fisher, D., Henis, Z. & Zinamon, Z. (2005b). GSI Annual Report 2004 on High Energy Density Physics with Intense Laser and Ion Beams (Weyrich, K. & Hoffmann, D.H.H., eds.). Darmstadt, Germany: GSI.
Gamaly, E.G., Rode, A.V., Luther-Davies, B. & Tikhonchuk, V.T. (2002). Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9, 949957.Google Scholar
Gambirasio, A., Bernasconi, M. & Colombo, L. (2000). Laser-induced melting of silicon: A tight-binding molecular dynamics simulation. Phys. Rev. B 61, 82338237.Google Scholar
Gericke, D.O., Murillo, M.S. & Schlanges, M. (2002). Dense plasma temperature equilibration in the binary collision approximation. Phys. Rev. E 65, 036418.Google Scholar
Griem, H.R. (1997). Principles of Plasma Spectroscopy. Cambridge, UK: Cambridge University Press.
Guo, C., Rodriguez, G., Lobad, A. & Taylor, A.J. (2000). Structural phase transition of aluminum induced by electronic excitation. Phys. Rev. Lett. 84, 44934496.Google Scholar
Hazak, G., Zinamon, Z., Rosenfeld, Y. & Dharma-wardana, M.W.C. (2001). Temperature relaxation in two-temperature states of dense electron-ion systems. Phys. Rev. E 64, 066411.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hunsche, S., Wienecke, K., Dekorsy, T. & Kurz, H. (1995). Impulsive Softening of Coherent Phonons in Tellurium. Phys. Rev. Lett. 75, 18151818.Google Scholar
Inokuti, M. & Smith, D.Y. (1982). Fermi density effect on the stopping power of metallic aluminum. Phys. Rev. B 25, 6166.Google Scholar
Jeschke, H.O., Garcia, M.E. & Bennemann, K.H. (2001). Theory for the ultrafast ablation of graphite films. Phys. Rev. Lett. 87, 015003.Google Scholar
Johansson, B. & Martensson, N. (1980). Core-level binding-energy shifts for the metallic elements. Phys. Rev. B 21, 44274457.Google Scholar
Ke Lan, F.E. & Meyer-ter-Vehn, J. (2004). Photopumping of XUV lasers by XFEL radiation. Laser Part. Beams 22, 261266.Google Scholar
Kemp, A., Pfund, R.E.W. & Meyer-ter-Vehn, J. (2004). Modeling ultrafast laser-driven ionization dynamics with Monte Carlo collisional particle-in-cell simulations. Phys. Plasmas 11, 56485657.Google Scholar
Knorren, R., Bouzerar, G. & Bennemann, K.H. (2001). Dynamics of excited electrons in copper: The role of Auger electrons. Phys. Rev. B 63, 094306.Google Scholar
Kogan, V.I. (1959). Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 1. New York: Pergamon Press.
Lee, Y.T. & More, R.M. (1984). An electron conductivity model for dense plasmas. Phys. Fluids 27, 12731286.Google Scholar
Lee, R.W., Baldis, H.A., Cauble, R.C., Landen, O.L., Wark, J.S., Ng, A., Rose, S.J., Lewis, C., Riley, D., Gauthier, J.-C. & Audebert, P. (2002). Plasma-based studies with intense X-ray and particle beam sources. Laser Part. Beams 20, 527536.Google Scholar
Liberman, D.A. (1979). Self-consistent field model for condensed matter. Phys.Rev. B 20, 49814989.Google Scholar
Liberman, D.A. (1982). INFERNO: A better model of atoms in dense plasmas. J. Quant. Spectrosc. Radiat. Transfer 27, 335339.Google Scholar
Lindenberg, A.M. et al. (2005). Atomic-scale visualization of inertial dynamics. Science 308, 392395.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.Google Scholar
Milchberg, H.M., Freeman, R.R., Davey, S.C. & More, R.M. (1988). Resistivity of a simple metal from room temperature to 106 K. Phys. Rev. Lett. 61, 23642367.Google Scholar
Mott, N.F. (1990). Metal-Insulator Transitions, 2nd ed. London: Taylor-Francis Ltd.
Murillo, M.S. & Weisheit, J.C. (1998). Dense plasmas, screened interactions, and atomic ionization. Phys. Rep. 302, 165.Google Scholar
Neddermeyer, H. (1976). X-ray emission and absorption edges of magnesium and aluminum. Phys. Rev. B 13, 24112417.Google Scholar
Ng, A., Celliers, P., Forsman, A., More, R.M., Lee, Y.T., Perrot, F., Dharma-wardana, M.W.C. & Rinker, G.A. (1994). Reflectivity of intense femtosecond laser pulses from a simple metal. Phys. Rev. Lett. 72, 33513354.Google Scholar
Nozieres, P. & Pines, D. (1959). Electron interaction in solids. Characteristic energy loss spectrum. Phys. Rev. 113, 12541267.Google Scholar
Pal'chikov, V.G. & Shevelko, V.P. (1995). Reference Data on Multicharged Ions. Berlin: Springer Verlag.
Price, D.F., More, R.M., Walling, R.S., Guethlein, G., Shepherd, R.L., Stewart, R.E. & White, W.E. (1995). Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1–1000 eV. Phys. Rev. Lett. 75, 252255.Google Scholar
Reitze, D.H., Ahn, H. & Downer, M.C. (1992). Optical properties of liquid carbon measured by femtosecond spectroscopy. Phys. Rev. B 45, 26772693.Google Scholar
Rethfeld, B., Sokolowski-Tinten, K., von der Linde, D. & Anisimov, S.I. (2002). Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103.Google Scholar
Rethfeld, B., Temnov, V.V., Sokolowski-Tinten, K., Tsu, P., von der Linde, D., Anisimov, S.I., Ashitkov, S.I. & Agranat, M.B. (2004). Superfast thermal melting of solids under the action of femtosecond laser pulses. J. Opt. Techn. 71, 348352.Google Scholar
Saeta, P., Wang, J.-K., Siegal, Y., Bloembergen, N. & Mazur, E. (1991). Ultrafast electronic disordering during femtosecond laser melting of GaAs. Phys. Rev. Lett. 67, 10231026.Google Scholar
Salzmann, D. (1998). Atomic Physics in Hot Plasmas. New York: Oxford University Press.
Sandhu, A.S., Dharmadhikari, A.K. & Kumar, G.R. (2005). Time resolved evolution of structural, electrical, and thermal properties of copper irradiated by an intense ultrashort laser pulse. J Appl. Phys. 97, 023526.Google Scholar
Schoene, W.-D., Keyling, R., Bandic, M. & Ekardt, W. (1999). Calculated lifetimes of hot electrons in aluminum and copper using a plane-wave basis set. Phys. Rev. B 60, 86168623.Google Scholar
Shank, C.V., Yen, R. & Hirlimann, C. (1983). Femtosecond-time-resolved surface structural dynamics of optically excited silicon. Phys. Rev. Lett. 51, 900902.Google Scholar
Siders, C.W., Cavalleri, A., Sokolowski-Tinten, K., Toth, Cs., Guo, T., Kammler, M., Horn von Hoegen, M., Wilson, K.R., von der Linde, D. & Barty, C.P.J. (1999). Detection of non-thermal melting by ultrafast X-ray diffraction. Science 286, 13401342.Google Scholar
Silvestrelli, P.L., Alavi, A., Parrinello, M. & Frenkel, D. (1996). Ab initio molecular dynamics simulation of laser melting of silicon. Phys. Rev. Lett. 77, 31493152.Google Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2003). An atomic-level view of melting using femtosecond electron diffraction. Science 302, 13821385.Google Scholar
Sokolowski-Tinten, K., Bialkowski, J. & von der Linde, D. (1995). Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B 51, 1418614198.Google Scholar
Sokolowski-Tinten, K., Bialkowski, J., Boing, M., Cavalleri, A. & von der Linde, D. (1998). Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B 58, R11805R11808.Google Scholar
Stampfli, P. & Bennemann, K.H. (1992). Dynamical theory of the laser-induced lattice instability of silicon. Phys. Rev. B 46, 1068610692.Google Scholar
Sternheimer, R.M. & Peierls, R.F. (1971). General expression for the density effect for the ionization loss of charged particles. Phys. Rev. B 3, 36813692.Google Scholar
Theis, W. & Horn, K. (1993). Temperature-dependent line broadening in core-level photoemission spectra from aluminum. Phys. Rev. B 47, 1606016063.Google Scholar
Tom, H.W.K., Aumiller, G.D. & Brito-Cruz, C.H. (1988). Time-resolved study of laser-induced disorder of Si surfaces. Phys. Rev. Lett. 60, 14381441.Google Scholar
Uteza, O.P., Gamaly, E.G., Rode, A.V., Samoc, M. & Luther-Davies, B. (2004). Gallium transformation under femtosecond laser excitation: Phase coexistence and incomplete melting. Phys. Rev. B 70, 054108.Google Scholar
von der Linde, D., Sokolowski-Tinten, K., Blome, Ch., Dietrich, C., Zhou, P., Tarasevitch, A., Cavalleri, A., Siders, C.W., Barty, C.P.J., Squier, J., Wilson, K.R., Uschmann, I., Foerster, E. (2001). Generation and application of ultrashort X-ray pulses. Laser Part. Beams 19, 1522.Google Scholar
Wang, X.Y. & Downer, M.C. (1992). Femtosecond time-resolved reflectivity of hydrodynamically expanding metal surfaces. Opt. Lett. 17, 14501452.Google Scholar
Wang, X.Y., Riffe, D.M., Lee, Y.-S., Downer, M.C. (1994). Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. Phys. Rev. B 50, 80168019.Google Scholar
Youn, S.J., Min, B.I., Rho, T.H. & Kim, K.S. (2004). Nested Fermi surfaces, optical peaks, and laser-induced structural transition in Al. Phys. Rev. B 69, 033101.Google Scholar
Zhukov, V.P., Chulkov, E.V. & Echenique, P.M. (2003). Lifetimes of d holes in Cu and Au: Full-potential LMTO approach. Phys. Rev. B 68, 045102.Google Scholar