Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T14:03:54.640Z Has data issue: false hasContentIssue false

Comparative electron density measurements for the refractive fringe diagnostic and Nomarski interferometry

Published online by Cambridge University Press:  09 March 2009

R. Buccellato
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa
P. F. Cunningham
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa
M. M. Michaelis
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa
A. Prause
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa

Abstract

Massive carbon targets were irradiated with a pulsed ruby laser and the laser-produced plasma electron densities were simultaneously evaluated using Nomarski interferometry and the refractive fringe diagnostic. An agreement of half an order of magnitude between the two diagnostics was obtained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attwood, D.T. et al. 1978 Phys. Rev. Lett. 40, 184.CrossRefGoogle Scholar
Bacon, M. et al. 1989 J. Appl. Phys. 66, 1075.CrossRefGoogle Scholar
Basov, U.G. et al. 1980 Sov. J. Plasma Phys. 6, 642.Google Scholar
Benattar, R. et al. 1979 Rev. Sci. Instrum. 50, 1583.CrossRefGoogle Scholar
Benattar, R. & Popovics, C. 1983 J. Appl. Phys. 54, 603.CrossRefGoogle Scholar
Bockasten, K. 1961 J. Optic. Soc. Am. 51, 943.CrossRefGoogle Scholar
Born, M. & Wolf, E. 1965 Principles of Optics (Pergamon Press Ltd., London, UK).Google Scholar
Cunningham, P.F. et al. 1986a J. Phys. E. Sci. Instrum. 19, 957.CrossRefGoogle Scholar
Cunningham, P.F. et al. 1986b S. A Jr. J. Phys. 9, 103.Google Scholar
Deutsch, M. & Beniaminy, I. 1982 Appl. Phys. Lett. 41, 27.CrossRefGoogle Scholar
Evtushenko, T.P. et al. 1971 Recent Advances in Plasma Diagnostics (Consultants Bureau, New York).Google Scholar
Fedosejevs, R. et al. 1979 Phys. Rev. Lett. 43, 1664.CrossRefGoogle Scholar
Keilmann, F. 1972 Plasma Phys. 14, 111.CrossRefGoogle Scholar
Kogelschatz, U. & Schneider, W.R. 1972 Appl. Optics 11, 1822.CrossRefGoogle Scholar
Michaelis, M.M. et al. 1985 Opt. Comm. 52, 371.CrossRefGoogle Scholar
Michaelis, M.M. & Willi, O. 1981 Opt. Comm. 36, 153.CrossRefGoogle Scholar
Pawlowicz, W. 1990 Internal Report (SINS-2103/P-V/PP/A) Soltan Institute for Nuclear Studies, Otwock-Swierk Poland.Google Scholar
Reintjes, J.F. et al. 1976 J. Appl. Phys. 47, 4457.CrossRefGoogle Scholar
Schreiber, P.W. et al. 1973 Plasma Phys. 15, 635.CrossRefGoogle Scholar
Sweeney, D.W. et al. 1916 Appl. Optics 15, 1126.CrossRefGoogle Scholar
Waitham, J.A. et al. 1987 Optics Laser Tech. 19, 203.CrossRefGoogle Scholar