Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T11:26:30.906Z Has data issue: false hasContentIssue false

Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses

Published online by Cambridge University Press:  07 June 2005

ALEXANDER FUERBACH
Affiliation:
Femtolasers Produktions GmbH, Vienna, Austria
A. FERNANDEZ
Affiliation:
Photonics Institute, Christian Doppler Laboratory, Vienna University of Technology, Vienna, Austria
A. APOLONSKI
Affiliation:
Photonics Institute, Christian Doppler Laboratory, Vienna University of Technology, Vienna, Austria
T. FUJI
Affiliation:
Photonics Institute, Christian Doppler Laboratory, Vienna University of Technology, Vienna, Austria
F. KRAUSZ
Affiliation:
Photonics Institute, Christian Doppler Laboratory, Vienna University of Technology, Vienna, Austria

Abstract

This paper reports on a novel approach for producing high energy femtosecond pulses without external amplification. The so-called chirped-pulse oscillator (CPO) concept is based on an extended-cavity oscillator, operating at small net positive intracavity group delay dispersion (GDD), over a broad spectral range by the use of chirped multilayer mirrors. The resultant chirped picosecond pulses are compressed by a dispersive delay line external to the laser cavity. Utilizing this technique, sub-30 fs pulses with an energy exceeding 200 nJ at a repetition rate of 11 MHz were produced. The demonstrated peak power in excess of 5 MW is the highest ever achieved from a cw-pumped laser and is expected to be scaleable to tens of megawatts by increasing the pump power and/or decreasing the repetition rate. The demonstrated source allows micromachining of any materials under relaxed focusing conditions.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Philippe, F. (2004). Progress in direct-drive fusion studies for the laser megajoule. Laser Part. Beams 22, 109114.Google Scholar
Cho, S.H., Kärtner, F.X., Morgner, U., Ippen, E.P., Fujimoto, J.G., Cunnighan, J.E. & Knox, W.H. (2001). Generation of 90-nJ pulses with a 4-MHz repetition rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion. Opt. Lett. 26, 560.CrossRefGoogle Scholar
Cote, D. & van Driel, M. (1998). Period doubling of a femtosecond Tisapphire laser by total mode locking. Opt. Lett. 23, 715.CrossRefGoogle Scholar
Di Bernardo, A., Courtois, C., Cros, B., Matthieussent, G., Batani, D., Desai, T., Strati, F. & Lucchini, G. (2003). High-intensity ultrashort laser-induced ablation of stainless steel foil targets in the presence of ambient gas. Laser Part. Beams 21, 5964.Google Scholar
Herriott, D., Kogelnik, H. & Kompfner, R. (1964). Off-axis paths in spherical mirror interferometers. Appl. Opt. 3, 523.CrossRefGoogle Scholar
Issac, R., Wirthig, J., Brunetti, E., Vieux, G., Ersfeld, B., Jamison, S.P., Jones, D., Bingham, R., Clark, D. & Jaroszynski, D.A. (2003). Bright source of K alpha and continuum X rays by heating Kr clusters using a femtosecond laser. Laser Part. Beams 21, 535540.Google Scholar
Korte, F., Adams, S., Egbert, A., Fallnich, C., Ostendorf, A., Nolte, S., Will, M., Ruske, J.P., Chichkov, B.N. & Tünnermann, A. (2000). Sub-diffraction limited structuring of solid targets with femtosecond laser pulses. Opt. Exp. 7, 41.CrossRefGoogle Scholar
Kowalevicz, A.M., Jr., Zare, A.T., Kaertner, F.X., Fujimoto, J.G., Dewald, S., Morgner, U., Scheuer, V. & Angelow, F. (2003). Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator. Opt. Lett. 28, 1597.CrossRefGoogle Scholar
Lenzner, M. (1999). Femtosecond Laser-Induced Damage of Dielectrics. Int. J. Mod. Phys. B 13, 1559.CrossRefGoogle Scholar
Limpouch, J., Klimo, O., Bìna, V. & Kawata, S. (2004). Numerical studies on the ultrashort pulse K-alpha emission sources based on femtosecond laser-target interactions. Laser Part. Beams 22, 147156.Google Scholar
Poppe, A., Lenzner, M., Krausz, F. & Spielmann, Ch. (1999). A sub-10-fs, 2.5-MW Ti:sapphire oscillator. Conference on Ultrafast Optics. Switzerland: Ascona.
Ramirez, J., Ramis, R. & Sanz, J. (2004). One-dimensional model for a laser-ablated slab under acceleration. Laser Part. Beams 22, 183188.Google Scholar
Sartania, S., Cheng, Z., Lenzner, M., Tempea, G., Spielmann, Ch., Krausz, F. & Ferencz, K. (1997). Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate. Opt. Lett. 22, 1562.Google Scholar