Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T00:46:54.332Z Has data issue: false hasContentIssue false

Attosecond electron pulses from interference of above-threshold de Broglie waves

Published online by Cambridge University Press:  07 March 2008

S. Varró*
Affiliation:
Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, Budapest, Hungary
Gy. Farkas
Affiliation:
Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, Budapest, Hungary
*
Address correspondence and reprint requests to: Sándor Varró, Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, P.O. Box 49, Budapest H-1525, Hungary. E-mails: [email protected] and [email protected]

Abstract

It is shown that the above-threshold electron de Broglie waves, generated by an intense laser pulse at a metal surface are interfering to yield attosecond electron pulses. This interference of the de Broglie waves is an analog on of the superposition of high harmonics generated from rare gas atoms, resulting in trains of attosecond light pulses. Our model is based on the Floquet analysis of the inelastic electron scattering on the oscillating double-layer potential, generated by the incoming laser field of long duration at the metal surface. Owing to the inherent kinematic dispersion, the propagation of attosecond de Broglie waves in vacuum is very different from that of attosecond light pulses, which propagate without changing shape. The clean attosecond structure of the current at the immediate vicinity of the metal surface is largely degraded due to the propagation, but it partially recovers at certain distances from the surface. Accordingly, above the metal surface, there exist “collapse bands,” where the electron current is erratic or noise-like, and there exist “revival layers,” where the electron current consist of ultrashort pulses of about 250 attosecond durations in the parameter range we considered. The maximum value of the current densities of such ultrashort electron pulses has been estimated to be on order of couple of tenth of mA/cm2. The attosecond structure of the electron photocurrent can perhaps be used for monitoring ultrafast relaxation processes in single atoms or in condensed matter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostini, P. (2001). Two-color and single-color above threshold ionization. In Atoms, Solids and Plasmas in Super-Intense Laser Fields (Batani, D., Joachain, C.J., Martellucci, S. and Chester, A.N., Eds), pp. 5980. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Antoine, Ph., L'Huillier, A. & Lewenstein, M. (1996). Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 12341237.CrossRefGoogle ScholarPubMed
Anwar, M.S., Latif, A., Iqbal, M., Rafique, M.S., Khaleeq-Ur-Rahman, M. & Siddique, S. (2006). Theoretical model for heat conduction in metals during interaction with ultra short laser pulse. Laser Part. Beams 24, 347353.CrossRefGoogle Scholar
Banfi, F., Gianetti, C., Ferrini, G., Galimberti, G., Pagliara, S., Fausti, D. & Parmigiani, F. (2005). Experimental evidence of above-threshold photoemission in solids. Phys. Rev. Lett. 94, 037601.CrossRefGoogle ScholarPubMed
Breidbach, J. & Cederbaum, L.S. (2005). Universal attosecond response to the removal of an electron. Phys. Rev. Lett. 94, 033901.CrossRefGoogle Scholar
Christov, I.P., Murname, M.M. & Kapteyn, H.C. (1997). High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 78, 12511254.CrossRefGoogle Scholar
Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S., Ezersky, V. & Eliezer, D. (2005). Nanoparticles and nanotubes induced by femtosecond lasers. Laser Part. Beams 23, 1519.CrossRefGoogle Scholar
Farkas, Gy. & Tóth, Cs. (1992). Proposal for attosecond light pulse generation using laser-induced multiple-harmonic conversion processes in rare gases. Phys. Lett. A 168, 447450.CrossRefGoogle Scholar
Farkas, Gy. & Tóth, Cs. (1990). Energy spectrum of photoelectrons produced by picosecond laser-induced surface multiphoton photoeffect. Phys. Rev. A 41, 41234126.CrossRefGoogle ScholarPubMed
Farkas, Gy., Tóth, Cs., Kőházi-Kis, A., Agostini, P., Petite, G., Martin, Ph., Berset, J.M. & Ortega, J.M. (1998). Infrared electron photoemission from a gold surface. J. Phys. B: At. Mol. Opt. Phys. B 31, L461L468.CrossRefGoogle Scholar
Fill, E., Veisz, L., Apolonski, A. & Krausz, F. (2006). Sub-fs electron pulses for ultrafast diffraction. New J Phys. 8, 272.CrossRefGoogle Scholar
Gradshteyn, I.S. & Ryzhik, I.M. (2000). Table of Integrals, Series and Products. Sixth Edition, page 923, formulas 8.511.3 and 8.511.4. San Diego, CA: Academic Press.Google Scholar
Hentschel, M., Kienberger, R., Spielmann, Ch., Reider, G.A., Milosevic, N., Brabec, Th., Drescher, M., Corkum, P., Heinzmann, U., Drescher, M. & Krausz, F. (2001). Attosecond metrology. Nature 414, 509513.CrossRefGoogle ScholarPubMed
Hidding, A., Amthor, K.-A., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G. & Sauerbrey, R. (2006). Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96, 105004.CrossRefGoogle ScholarPubMed
Hu, S.X. & Collins, L.A. (2006). Attosecond pump-probe: Exploring ultrafast electron motion inside an atom. Phys. Rev. Lett. 96, 073004.Google Scholar
Johnsson, P., López-Martens, R., Kazamias, S., Mauritsson, J., Valentin, C., Remetter, T., Varjú, K., Gaarde, M.B., Mairesse, Y., Wabnitz, H., Saliéres, P., Balcou, Ph., Schafer, K.J. & L'Huiller, A. (2005). Attosecond electron wave packet dynamics in strong laser fields. Phys. Rev. Lett. 95, 013001.CrossRefGoogle ScholarPubMed
Kanapathipillai, M. (2006). Nonlinear absorption of ultra-short laser pulses by clusters. Laser Part. Beams 24, 914.CrossRefGoogle Scholar
Kiselev, S., Pukhov, A. & Kostyukov, I. (2004). X-ray generation on strongly nonlinear plasma waves. Phys. Rev. Lett. 93, 135004.CrossRefGoogle ScholarPubMed
Kroó, N., Varró, S., Farkas, Gy., Oszetzky, D., Nagy, A. & Czitrovszky, A. (2007). Quantum metal optics. J Modern Opt 54, 26792688.CrossRefGoogle Scholar
Kylstra, N., Joachain, C.J. & Dörr, M. (2001). Theory of multiphoton ionization of atoms. In Atoms, Solids and Plasmas in Super-intense Laser Fields (Batani, D., Joachain, C.J., Martellucci, S. and Chester, A.N., Eds), pp 1536. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
L'Huillier, A., Balcou, Ph., Candel, S., Schafer, K.J. & Kulander, K.C. (1992). Calculation of high-order harmonic-generation processes in xenon at 1064 nm. Phys Rev. A 46, 27782790.CrossRefGoogle ScholarPubMed
Lewenstein, M., Balcou, Ph., Ivanov, M.Yu., L'Huillier, A. & Corkum, P.B. (1994). Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 21172132.CrossRefGoogle ScholarPubMed
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Lindner, F., Schaetzel, M.G., Walther, H., Goulielmakis, E., Krausz, F., Milosevic, D.B., Bauer, D., Becker, W. & Paulus, G.G. (2005). Attosecond double-slit experiment. Phys. Rev. Lett. 95, 040401.CrossRefGoogle ScholarPubMed
López-Martens, R., Varjú, K., Johnsson, P., Mauritsson, J., Mairesse, Y., Saliéres, P., Gaarde, M.B., Schafer, K.J., Persson, A., Svanberg, S., Wahlström, C.-L. & L'Huillier, A. (2005). Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001.CrossRefGoogle ScholarPubMed
Mauritsson, J., Gaarde, M.B. & Schafer, K.J. (2005). Accessing of electron wave packets generated by attosecond pulse trains through time-dependent calculations. Phys. Rev. A 72, 013401.CrossRefGoogle Scholar
Niikura, H., Villeneuve, D.M. & Corkum, P.B. (2005). Mapping attosecond wave packet motion. Phys. Rev. Lett. 94, 083003.CrossRefGoogle ScholarPubMed
Papadogiannis, N.A., Witzel, B., Kalpouzos, C. & Charalambidis, D. (1999). Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 83, 42894292.CrossRefGoogle Scholar
Paul, P.M., Toma, E.S., Breger, P., Mullot, G., Augé, F., Balcou, Ph., Muller, H.G. & Agostini, P. (2001). Observation of a train of attosecond pulses from high harmonic generation. Science 292, 16891692.CrossRefGoogle ScholarPubMed
Paulus, G.G. & Walther, H. (2001). The classical and the quantum face of above-threshold ionization. In Atoms, Solids and Plasmas in Super-Intense Laser Fields (Batani, D., Joachain, C.J., Martellucci, S. and Chester, A.N., Eds.), pp 285300. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (2002). Laser wake field accelerator: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.CrossRefGoogle Scholar
Quèrè, F., Thaury, C., Monot, P., Dobosz, P., Martin, Ph., Geindre, J.-P. & Audebert, P. (2006). Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004.CrossRefGoogle ScholarPubMed
Radzig, A.A. & Smirnov, B.M. (1985). Reference Data on Atoms, Molecules and Ions. Berlin: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Remetter, T., Johsson, P., Mauritsson, J., Varjú, K., Ni, Y., Lépine, F., Gustafsson, E., Schafer, K.J., Vrakking, M.J.J. & L'Huillier, A. (2006). Attosecond electron wave packet interferometry. Nat. Phys. 2, 323326.CrossRefGoogle Scholar
Saliéres, P. (2001). High-order harmonic generation. In Atoms, Solids and Plasmas in Super-Intense Laser Fields (Batani, D., Joachain, C.J., Martellucci, S. and Chester, A.N., Eds.), pp 8397. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Sansone, G., Benedetti, E., Calegary, F., Vozzi, C., Avaldi, L., Flammini, L., Poletto, L., Villoresi, P., Altucci, C., Velotta, R., Stagira, S., De Silvestri, S. & Nisoli, M. (2006). Isolated single-cycle attosecond pulses. Science 314, 443446.CrossRefGoogle ScholarPubMed
Schwengelbeck, U., Plaja, L., Conejero Jarque, E., Roso, L., Varró, S. & Farkas, Gy. (2002). Prediction of step-like occupation and inversion of states in thin films exposed to laser pulses. J. Phys. B:At. Mol.Opt.Phys. 35, L181L185.CrossRefGoogle Scholar
Sherlock, M., Bell, A.R. & Rozmus, W. (2006). Absorption of ultra-short laser pulses and particle transport in dense targets. Laser Part. Beams 24, 231234.CrossRefGoogle Scholar
Sokolov, A.V. (1967). Optical Properties of Metals. London, UK: Blackie and Son Limited.Google Scholar
Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. (2006). Route to intense single attosecond pulses. New J. Phys. 8, 19.CrossRefGoogle Scholar
Tzallas, P.Charalambidis, D., Papadogiannis, N.A., Witte, K. & Tsakiris, G.D. (2003). Direct observation of attosecond light bunching. Nature 426, 267271.CrossRefGoogle ScholarPubMed
Uiberacker, M., Uphues, Th., Schultze, M., Verhoef, A.J., Yakovlev, V., Kling, M.F., Rauschenberger, J., Kabachnik, N.M., Schröder, H.Lezius, M., Kompa, K.L., Muller, H.-G., Vrakking, M.J.J., Hendel, S., Kleineberg, U., Heinzmann, U., Drescher, M. & Krausz, F. (2007). Attosecond real-time observation of electron tunneling in atoms. Nature 446, 627632.CrossRefGoogle ScholarPubMed
Varró, S. & Ehlotzky, F. (1998). High-order multiphoton ionization at metal surfaces by laser fields of moderate power. Phys. Rev. A 57, 663666.CrossRefGoogle Scholar
Varró, S. (2007). Linear and nonlinear absolute phase effects in interaction of ultrashort laser pulses with a metal nano-layer or with a thin plasma layer. Laser Part. Beams 25, 379390.CrossRefGoogle Scholar
Willi, O., Toncian, T., Borghesi, M., Fuchs, J., D'humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C., Pipahl, A. & Romagnani, L. (2007). Laser triggered micro-lens for focusing and energy selection of MeV protons. Laser Part. Beams 25, 7177.CrossRefGoogle Scholar
Zayats, A.V., Smolyaninov, I.I. & Maradunin, A.A. (2005). Nano-optics of surface plasmon polaritons. Phys. Rept. 408, 131314.CrossRefGoogle Scholar