Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T08:45:55.914Z Has data issue: false hasContentIssue false

Asymptotic measurements of free surface instabilities in laser-induced shock waves

Published online by Cambridge University Press:  09 March 2009

M. Werdiger
Affiliation:
Plasma Physics, Soreq NRC, Yavne 81800, Israel
B. Arad
Affiliation:
Plasma Physics, Soreq NRC, Yavne 81800, Israel
Z. Henis
Affiliation:
Plasma Physics, Soreq NRC, Yavne 81800, Israel
Y. Horowitz
Affiliation:
Plasma Physics, Soreq NRC, Yavne 81800, Israel
E. Moshe
Affiliation:
Plasma Physics, Soreq NRC, Yavne 81800, Israel
S. Maman
Affiliation:
Plasma Physics, Soreq NRC, Yavne 81800, Israel
A. Ludmirsky
Affiliation:
Plasma Physics, Soreq NRC, Yavne 81800, Israel
S. Eliezer
Affiliation:
Plasma Physics, Soreq NRC, Yavne 81800, Israel

Abstract

An experimental technique based on optical scattering to detect melting in release of strongly shocked materials is presented. This method is used to study the asymptotic behavior of the free surface of shock-loaded materials. After reflection of a shock wave from a metallic sample free surface, occurrence of a solid to liquid transition will induce a dynamic behavior such as mass ejection and development of instabilities. A study of the mass ejection due to laser-induced shock waves in aluminium, copper, and tin targets is presented. Shock waves of order of hundreds of kilobars to more than one megabar are produced by a Nd:YAG laser system with a wavelength of 1.06 μm, pulse width of 7 ns FWHM focused to spot of 200 μm. The velocities, size, and topological structure of the ejected particles are measured. The radii of the ejecta are in the range 0.5–7 μm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alon, U. et al. 1995 Phys. Rev. Lett. 74, 534.CrossRefGoogle Scholar
Andriot, P. et al. 1982 Shock Waves in Condensed Matter '81 (American Institute of Physics, New York).Google Scholar
Arad, B. et al. 1995 Rev. Sci. Instr. 66, 5590.Google Scholar
Asay, J.R. et al. 1976 Appl. Phys. Lett. 29, 254.CrossRefGoogle Scholar
Barber, P.W. & Hill, S.C. 1990 Light Scattering by Particles: Computational Methods (World Scientific, Singapore).CrossRefGoogle Scholar
Boustie, M. & Cottet, F. 1991 J. Appl. Phys. 69, 7533.Google Scholar
Bushman, A.V. et al. 1993 Intense Dynamic Loading of Condensed Matter (Taylor & Francis, London).Google Scholar
Chapron, P. & Elias, P. 1991 In Proc. 18th International Symposium on Shock Waves, Sendai, Japan 21–26 July 1991, Takayama, K., ed. (Springer-Verlag, New York).Google Scholar
Cheret, R. et al. 1986 Shock Waves in Condensed Matter '85 (Plenum Press, New York).Google Scholar
Chhabildas, L.C. et al. 1994 High-Pressure Science and Technology '93 (American Institute of Physics, New York).Google Scholar
Cottet, F. & Romain, J.P. 1982 Phys. Rev. A 25, 576.CrossRefGoogle Scholar
Dahlburg, J.P. et al. 1993 Phys. Fluids B5, 571.CrossRefGoogle Scholar
Duvall, G.E. 1977 Rev. Mod. Phys. 49, 523.CrossRefGoogle Scholar
Elias, P. & Chapron, P. 1986 Shock Waves in Condensed Matter '85 (Plenum Press, New York).Google Scholar
Eliezer, S. et al. 1990a J. Appl. Phys. 67, 715.CrossRefGoogle Scholar
Eliezer, S. et al. 1990b J. Appl. Phys. 68, 356.CrossRefGoogle Scholar
Fortov, V.E. et al. 1992 J. Appl. Phys. 70, 4542.Google Scholar
Gilath, I. et al. 1988a J. Mater. Sci. Lett. 7, 915.CrossRefGoogle Scholar
Gilath, I. et al. 1988b Appl. Phys. Lett. 52, 1207.CrossRefGoogle Scholar
Gilath, I. et al. 1993 Int. J. Impact Eng. 14, 279.CrossRefGoogle Scholar
Grady, D.E. & Kipp, M.E. 1993 High Pressure Shock Compression of Solids (Springer-Verlag, New York).Google Scholar
Henis, Z. & Eliezer, S. 1993 Phys. Rev. E 48, 2094.CrossRefGoogle Scholar
Lindl, J.D. & Mead, W.C. 1975 Phys. Rev. Lett. 34, 1273.CrossRefGoogle Scholar
Moriati, J.A. 1986 Shock Waves in Condensed Matter '85 (Plenum Press, New York).Google Scholar
Perry, F.C. & Mix, L.P. 1975 Appl. Phys. Lett. 27, 194.CrossRefGoogle Scholar
Remiot, C. et al. 1994 High-Pressure Science and Technology '93 (American Institute of Physics, New York).Google Scholar
Ross, M. 1991 High Pressure Equation of State: Theory and Applications (North-Holland, Amsterdam).Google Scholar
Stauffer, D. 1985 Introduction to Percolation Theory (Taylor & Francis, London).CrossRefGoogle Scholar
Takabe, H. & Yamamoto, A. 1991 Phys. Rev. A 44, 5412.CrossRefGoogle Scholar
Wark, J.S. et al. 1990 J. Appl. Phys. 68, 4531.CrossRefGoogle Scholar
Werdiger, M. et al. 1995 Quant. Elect. 25, 153.CrossRefGoogle Scholar