Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T10:08:42.172Z Has data issue: false hasContentIssue false

About the most unstable modes encountered in beam plasma interaction physics

Published online by Cambridge University Press:  28 February 2007

ANTOINE BRET
Affiliation:
ETSI Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
MARIE-CHRISTINE FIRPO
Affiliation:
Laboratoire de Physique et de Technologie des Plasmas (CNRS-UMR 7648), Ecole Polytechnique, Palaiseau cedex, France
CLAUDE DEUTSCH
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas (CNRS-UMR 8578), Université Paris XI, Orsay cedex, France

Abstract

A thorough analysis of the electromagnetic instabilities encountered in the beam plasma interaction physics shows that the most unstable modes are not the ones which are usually studies. We characterize these most unstable modes and determine the patterns they create.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bret, A., Firpo, M.-C. & Deutsch, C. (2004). Collective electromagnetic modes for beam-plasma interaction in the whole k space. Phys. Rev. E 70, 046401.Google Scholar
Bret, A., Firpo, M.-C. & Deutsch, C. (2005a). Bridging the gap between two stream and filamentation instabilities. Laser Part. Beams 23, 375.Google Scholar
Bret, A., Firpo, M.-C. & Deutsch, C. (2005b). Characterization of the initial filamentation of a relativistic electron beam passing through a plasma. Phys. Rev. Lett. 94, 115002.Google Scholar
Bret, A., Firpo, M.-C. & Deutsch, C. (2005c). Collective electromagnetic instabilities for relativistic beam-plasma interaction for whole k space: non relativistic beam and plasma temperature effects. Phys. Rev. E 72, 016403.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1997). Interaction physics of the fast ignitor concept. Laser Part. Beams 15, 577.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95.Google Scholar
Silva, L.O., Fonseca, R.A., Tonge, J.W., Mori, W.B. & Dawson, J.M. (2002). On the role of the purely transverse weibel instability in fast ignitor scenarios. Phys. Plasmas 9, 2458.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.Google Scholar