Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T20:35:01.108Z Has data issue: false hasContentIssue false

A 3D trajectory numerical simulation of the transport of energetic light ion beams in plasma targets

Published online by Cambridge University Press:  07 June 2005

MANUEL D. BARRIGA-CARRASCO
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université Paris XI, Orsay cedex, France
GILLES MAYNARD
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université Paris XI, Orsay cedex, France

Abstract

We present in this paper a theoretical modeling and a numerical simulation devoted to the problem of transport and energy deposition profile of high current light ion beams interacting with dense matter. A numerical code, named MBC-ITFIP, is used to follow the trajectories of light atomic or molecular ions inside plasma targets with non-uniform density, temperature and composition profiles. MBC-ITFIP has been more specifically optimized for application of ion beams generated by the new high intensity laser sources, such as radiography and isochoric heating of dense plasmas.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abril, I., Garcia-Molina, R., Denton, D.C., Pérez-Pérez, F.J. & Arista, N.R. (1998). Dielectric description of wakes and stopping powers in solids. Phys. Rev. A 58, 357366.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. & Garcia-Molina, R. (2003). Vicinage forces between molecular and atomic fragments dissociated from small hydrogen clusters and their effects on energy distributions. Phys Rev. A 68, 062902(8).CrossRefGoogle Scholar
Barriga-Carrasco, M.D., Maynard, G. & Kurilenkov, Yu. (2004). Influence of transverse diffusion within the proton beam fast ignitor scenario. Phys. Rev. E 70, 066407(9).Google Scholar
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., MacKinnon, A.J., Gizzi, L.A., Galimberti, M., Clarke, R.J. & Ruhl, H. (2001). Proton imaging: A diagnostic for inertial confinement fusion/fast ignitor studies. Plasma Phys. Control. Fusion 43, A267276.CrossRefGoogle Scholar
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 84, 670673.CrossRefGoogle Scholar
Esirkepov, T.Zh., Bulanov, S.V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V.S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y., Nagai, K. & Sakabe, S. (2002). Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89, 175003(4).Google Scholar
Fano, U. (1963). Penetration of protons, alpha particles, and mesons. Annu. Rev. Nucl. Sci. 13, 166.CrossRefGoogle Scholar
Garcia-Molina, R., Abril, I., Denton, D.D. & Arista, N.R. (2002a). Exit angle, energy loss and internuclear distance distributions of H2+ ionms dissociated when traversing different materials. Nucl. Instr. Meth. B 164–165, 310317.Google Scholar
Garcia-Molina, R., Abril, I., Denton, D.D. & Arista, N.R. (2002b). Energy-loss and exit-angle distributions of fragmented H2+ ions after traversing carbon foils. Phys. Rev. A 62, 012901(5).Google Scholar
Garcia-Molina, R. & Barriga-Carrasco, M.D. (2003). Simulation of the molecular recombination yield for swift H2+ ions through thin carbon foils. Phys Rev. A 68, 054901(4).CrossRefGoogle Scholar
Garbet, X., Deutsch, C. & Maynard, G. (1987). Mean excitation-energies for ions in gases and plasmas. J. Appl. Phys. 61, 907916.CrossRefGoogle Scholar
Gardès, D., Chabot,M., Nectoux, M., Maynard, G., Deutsch, C., &Belyaev, G. (2001). Experimental analysis of the stopping cross sections and of the charge changing processes for Clq+ projectiles at the maximum of the stopping power. Nucl. Instr. Meth. A 464, 253256.CrossRefGoogle Scholar
Goldstein, H. (1980). Classical Mechanics. Reading, MA: Addison-Wesley.
King, N.S.P., Ables, E., Adams, K., Alrick, K.R., Amann, J.F., Balzar, S., Barnes Jr., P.D., Crow, M.L., Cushing, S.B., Eddleman, J.C., Fife, T.T., Flores, P., Fujino, D., Gallegos, R.A., Gray, N.T., Hartouni, E.P., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., Knudsson, J.N., London, R.K., Lopez, R.R., McDonald, T.E., McClelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Naivar, F.J., Parker, E.L., Park, H.S., Pazuchanics,P.D., Pillai, C., Riedel, C.M., Sarracino, J.S., Shelley Jr., F.E., Stacy, H.L., Takala, B.E., Thompson, R., Tucker, H.E., Yates, G.J., Ziock, H.-J., &Zumbro, J.D. (1999). An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instr. Meth. A 424, 8491.CrossRefGoogle Scholar
Kodoma, R., Tanaka, K.A., Sentoku, Y., Matsushita, T., Takahashi, K., Fujita, H., Kitagawa, Y., Kato, Y., Yamanaka, T. & Mima, K. (2000). Long-scale jet formation with specularly reflected light in ultraintense laser-plasma interactions. Phys. Rev. Lett. 84, 674677.CrossRefGoogle Scholar
Koehler, A.M. (1968). Proton radiography. Science 160, 303.CrossRefGoogle Scholar
Lindhard, J. & Winther, A. (1964). Stopping power of electron gas and equipartition rule. K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 34, No. 4.Google Scholar
Mabong, S., Maynard, G. & Katsonis, K. (1996). Parametric potential for modeling of highly charged heavy ions. Laser Part. Beams 14, 575586.CrossRefGoogle Scholar
Maynard, G. & Deutsch, C. (1985). Born random phase approximation for ion stopping in an arbitrary degenerate electron fluid. J. Physique 46, 11131122.CrossRefGoogle Scholar
Maynard, G., Deutsch, C., Dimitriou, K., Katsonis, K. & Sarrazin, M. (2002). Evaluation of the energy deposition profile for swift heavy ions in dense plasmas. Nucl. Instr. Meth. B 195, 188215.CrossRefGoogle Scholar
Mermin, N.D. (1970). Lindhard dielectric function in the relaxation-time approximation. Phys. Rev. B 1, 23622363.CrossRefGoogle Scholar
Möller, W., Pospiech, G. & Schrieder, G. (1975). Multiple scattering calculations on ions passing through thin amorphous foils. Nucl, Instr. Meth. 130, 265270.CrossRefGoogle Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrasfast proton beam. Phys. Rev. Lett. 91, 125004(4).Google Scholar
Pemler, P., Besserer, J., de Boer, J., Dellert, M., Gahn, C., Moosburger, M., Schneider, U., Pedroni, E. & Stäuble, H. (1999). A dector system for proton radiography on the gantry of the Paul-Scherrer-Institute. Nucl. Instr. Meth. A 432, 483495.CrossRefGoogle Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.-C., Audebert, P., Fuchs, J., Meyer-ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. STAB. 5, 061301(8).CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, K., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A.J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle Scholar
Zajfman, D., Both, G., Kanter, E.P. & Vager, Z. (1990). Effect of coherent multiple scattering on the transmission of H2+ through thin foils. Phys. Rev. A 41, 24822488.CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P. & Littmark, U. (1985). The Stopping and Range of Ions in Solids, The Stopping and Ranges of Ions in Matter, Vol. 1. New York: Pergamon.