Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T02:39:58.789Z Has data issue: false hasContentIssue false

Masked orthographic neighbor priming effects in Chinese two-character words

Published online by Cambridge University Press:  15 May 2023

Huilan Yang*
Affiliation:
Department of Foreign Languages, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
Giacomo Spinelli
Affiliation:
Department of Psychology, University of Milano-Bicocca, Milan, MI, Italy
Lingling Li
Affiliation:
Department of Applied Foreign Languages, Zhejiang International Studies University, Hangzhou, Zhejiang, China
Stephen J. Lupker
Affiliation:
Department of Psychology, University of Western Ontario, London, ON, Canada
*
Corresponding authors: Huilan Yang and Stephen J. Lupker; Emails: [email protected]; [email protected]

Abstract

In masked priming lexical decision tasks in alphabetic or syllabic script languages, latencies are longer when a word target is primed by a higher frequency neighbor (e.g., blue–BLUR) than when primed by an unrelated word of equivalent frequency (e.g., care–BLUR) – an “inhibitory neighbor priming effect.” In contrast, Zhou et al. (1999) demonstrated facilitatory orthographic neighbor priming for two-character Chinese words (e.g., 华丽–华贵). However, Zhou et al. did not control for relative prime-target frequency, which has been shown to be important in experiments when examining languages with other scripts. In the present Experiment 1 word neighbor primes (e.g., 容易-容貌) produced an inhibitory neighbor priming effect when the prime was higher frequency than the target, paralleling effects in other script languages. In further experiments, paralleling those in other script languages, two-character targets primed by nonword neighbors (容待-容貌) or single constituent characters matching the target in either position (容-容貌) showed significant facilitation. These results suggest that lexical activation/competition processes for two-character Chinese words are reasonably similar to those for words in alphabetic/syllabic script languages.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelman, J. S., Johnson, R. L., McCormick, S. F., McKague, M., Kinoshita, S., Bowers, J. S., Perry, J. R., Lupker, S. J., Forster, K. I., Cortese, M. J., Scaltritti, M., Aschenbrenner, A. J., Coane, J. H., White, L., Yap, M. J., Davis, C., Kim, J., & Davis, C. J. (2014). A behavioral database for masked form priming. Behavior Research Methods, 46(4), 10521067. https://doi.org/10.3758/s13428-013-0442-yCrossRefGoogle ScholarPubMed
Andrews, S., & Hersch, J. (2010). Lexical precision in skilled readers: Individual differences in Masked neighbor priming. Journal of Experimental Psychology: General, 139(2), 299318. https://doi.org/10.1037/a0018366CrossRefGoogle ScholarPubMed
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255278. https://doi.org/10.1016/j.jml.2012.11.001CrossRefGoogle ScholarPubMed
Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148. https://doi.org/10.18637/jss.v067.i01CrossRefGoogle Scholar
Brysbaert, M., Lange, M., & Van Wijnendaele, I. (2000). The effects of age-of-acquisition and frequency-of-occurrence in visual word recognition: Further evidence from the Dutch language. European Journal of Cognitive Psychology, 12(1), 6585. https://doi.org/10.1080/095414400382208CrossRefGoogle Scholar
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 120. https://doi.org/10.5334/joc.10CrossRefGoogle ScholarPubMed
Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. PloS One, 5(6), e10729. https://doi.org/10.1371/journal.pone.0010729CrossRefGoogle ScholarPubMed
Coltheart, M., Davelaar, E., Jonasson, J. T., & Besner, D. (1977). Access to the internal lexicon. In Dornic, S. (Ed.), Attention and performance VI (pp. 535555). Erlbaum.Google Scholar
Crepaldi, D., Rastle, K., Coltheart, M., & Nickels, L. (2010). ‘Fell’primes ‘fall’, but does ‘bell’prime ‘ball’? Masked priming with irregularly-inflected primes. Journal of Memory and Language, 63(1), 8399. https://doi.org/10.1016/j.jml.2010.03.002CrossRefGoogle Scholar
Crepaldi, D., Rastle, K., Davis, C. J., & Lupker, S. J. (2013). Seeing stems everywhere: position-independent identification of stem morphemes. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 510525. https://doi.org/10.1037/a0029713Google ScholarPubMed
Davis, C. J. (2003). Factors underlying masked priming effects in competitive network models of visual word recognition. In Kinoshita, S. & Lupker, S. J. (Eds.), Masked priming: The state of the art (pp. 121170). Psychology Press.Google Scholar
Davis, C. J., & Lupker, S. J. (2006). Masked inhibitory priming in English: Evidence for lexical inhibition. Journal of Experimental Psychology: Human Perception and Performance, 32(3), 668687. https://doi.org/10.1037/0096-1523.32.3.668Google ScholarPubMed
Davis, C. J., & Taft, M. (2005). More words in the neighborhood: Interference in lexical decision due to deletion neighbors. Psychonomic Bulletin & Review, 12(5), 904910. https://doi.org/10.3758/BF03196784CrossRefGoogle ScholarPubMed
Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117(3), 713758. https://doi.org/10.1037/a0019738.CrossRefGoogle ScholarPubMed
Diependaele, K., Sandra, D., & Grainger, J. (2009). Semantic transparency and masked morphological priming: The case of prefixed words. Memory & Cognition, 37(6), 895908. https://doi.org/10.3758/MC.37.6.895CrossRefGoogle ScholarPubMed
Duñabeitia, J. A., Perea, M., & Carreiras, M. (2009). There is no claim with coats in the calm coast: Delimiting the transposed-letter priming effect. Quarterly Journal of Experimental Psychology, 62(10), 19301947. https://doi.org/10.1080/17470210802696070CrossRefGoogle Scholar
Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(4), 680698. https://doi.org/10.1037/0278-7393.10.4.680Google Scholar
Forster, K. I., Davis, C., Schoknecht, C., & Carter, R. (1987). Masked priming with graphemically related forms: Repetition or partial activation? Quarterly Journal of Experimental Psychology, 39(2), 211251. https://doi.org/10.1080/14640748708401785CrossRefGoogle Scholar
Forster, K. I., & Veres, C. (1998). The prime lexicality effect: Form priming as a function of prime awareness, lexical status, and discrimination difficulty. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(2), 498514. https://doi.org/10.1037/0278-7393.24.2.498Google ScholarPubMed
Gao, F., Wang, J., Zhao, C. G., & Yuan, Z. (2022). Word or morpheme? Investigating the representation units of L1 and L2 Chinese compound words in mental lexicon using a repetition priming paradigm. International Journal of Bilingual Education and Bilingualism, 25(7), 23822396. https://doi.org/10.1080/13670050.2021.1913984CrossRefGoogle Scholar
Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103(3), 518565. https://doi.org/10.1037/0033-295X.103.3.518CrossRefGoogle ScholarPubMed
Gu, J., Li, X., & Liversedge, S. P. (2015). Character order processing in Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 127137. https://doi.org/10.1037/a0038639Google ScholarPubMed
Heathcote, L., Nation, K., Castles, A., & Beyersmann, E. (2018). Do ‘blacheap’ and ‘subcheap’ both prime ‘cheap’? An investigation of morphemic status and position in early visual word processing. Quarterly Journal of Experimental Psychology, 71(8), 16451654. https://doi.org/10.1080/17470218.2017.1362704CrossRefGoogle ScholarPubMed
Hino, Y., & Lupker, S. J. (1998). The effects of word frequency for Japanese kana and kanji words in naming and lexical decision: Can the dual-route model save the lexical-selection account? Journal of Experimental Psychology: Human Perception and Performance, 24(5), 14311453. https://doi.org/10.1037/0096-1523.24.5.1431Google Scholar
Hino, Y., Miyamura, S., & Lupker, S. J. (2011). The nature of orthographic-phonological and orthographic-semantic relationships for Japanese Kana and Kanji words. Behavior Research Methods, 43(4), 11101151. https://doi.org/10.3758/s13428-011-0101-0CrossRefGoogle ScholarPubMed
Huang, H. W., Lee, C. Y., Tsai, J. L., Lee, C. L., Hung, D. L., & Tzeng, O. J. (2006). Orthographic neighborhood effects in reading Chinese two-character words. Neuroreport, 17(10), 10611065. https://doi.org/10.1097/01.wnr.0000224761.77206.1dCrossRefGoogle ScholarPubMed
Johnson, R. L., & Eisler, M. E. (2012). The importance of the first and last letter in words during sentence reading. Acta Psychologica, 141(3), 336351. https://doi.org/10.1016/j.actpsy.2012.09.013CrossRefGoogle ScholarPubMed
Jordan, T. R., Thomas, S. M., Patching, G. R., & Scott-Brown, K. C. (2003). Assessing the importance of letter pairs in initial, exterior, and interior positions in reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(5), 883893. https://doi.org/10.1037/0278-7393.29.5.883Google ScholarPubMed
Kawakami, M. (2002). Kanji niji-jukugo no ruijigo suu to kousei moji no syutsugen hindo ga goihandan kadai ni oyobosu kouka [Effects of neighborhood size and character frequency on lexical decisions to two-character Kanji compound words]. Japanese Journal of Psychology, 73, 346351. https://doi.org/10.4992/jjpsy.73.346Google Scholar
Levy, R. (2014) Using R formulae to test for main effects in the presence of higher-order interactions. Preprint, arXiv:1405.2094.Google Scholar
Lo, S., & Andrews, S. (2015). To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology, 30(6), 1171. https://doi.org/10.3389/fpsyg.2015.01171Google Scholar
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Pt. 1. An account of basic findings. Psychological Review, 88(5), 375407. https://doi.org/10.1037/0033-295X.88.5.375CrossRefGoogle Scholar
Morey, R. D., Rouder, J. N., & Jamil, T. (2015). BayesFactor: Computation of Bayes factors for common designs. R Package Version 0.9, 9, 2014. Retrieved from http://cran.r-project.org/package=%0ABayesFactor.Google Scholar
Nakayama, M., Sears, C. R., Hino, Y., & Lupker, S. J. (2014). Do masked orthographic neighbor primes facilitate or inhibit the processing of Kanji compound words? Journal of Experimental Psychology: Human Perception and Performance, 40(2), 813840. https://doi.org/10.1037/a0035112Google ScholarPubMed
Nakayama, M., Sears, C. R., & Lupker, S. J. (2008). Masked priming with orthographic neighbors: A test of the lexical competition assumption. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 12361260. https://doi.org/10.1037/0096-1523.34.5.1236Google Scholar
Nakayama, M., Sears, C. R., & Lupker, S. J. (2011). Lexical competition in a non-Roman, syllabic script: An inhibitory neighbour priming effect in Japanese Katakana. Language and Cognitive Processes, 26(8), 11361160. https://doi.org/10.1080/01690965.2010.491251CrossRefGoogle Scholar
Peng, D., Li, Y., & Liu, Z. (1994). Identification of the Chinese two-character word under repetition priming condition. Acta Psychologica Sinica, 26(04), 393400.Google Scholar
Peressotti, F., & Grainger, J. (1999). The role of letter identity and letter position in orthographic priming. Perception & Psychophysics, 61(4), 691706. https://doi.org/10.3758/BF03205539CrossRefGoogle ScholarPubMed
R Core Team. (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Retrieved from https://cran.r-project.org/doc/manuals/r-release/R-ints.html.Google Scholar
Rastle, K., Davis, M. H., & New, B. (2004). The broth in my brother’s brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin & Review, 11(6), 10901098. https://doi.org/10.3758/BF03196742CrossRefGoogle Scholar
Russell, L. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.0. Retrieved from https://CRAN.R-project.org/package=emmeans.Google Scholar
Scaltritti, M., & Balota, D. A. (2013). Are all letters really processed equally and in parallel? Further evidence of a robust first letter advantage. Acta Psychologica, 144(2), 397410. https://doi.org/10.1016/j.actpsy.2013.07.018CrossRefGoogle ScholarPubMed
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User’s guide. Psychology Software Tools.Google Scholar
Segui, J., & Grainger, J. (1990). Priming word recognition with orthographic neighbors: Effects of relative prime-target frequency. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 6576. https://doi.org/10.1037/0096-1523.16.1.65Google ScholarPubMed
Shoolman, N., & Andrews, A. (2003). Racehorses, reindeer, and Sparrows: Using masked priming to investigate morphological influences on com-pound word identification. In Kinoshita, S. & Lupker, S. J. (Eds.), Masked priming: The state of the art (pp. 241278). Hove, UK: Psychology Press.Google Scholar
Singmann, H., & Kellen, D. (2019). An Introduction to mixed models for experimental psychology. In Spieler, D.H. & Schumacher, E. (Eds.), New methods in neuroscience and cognitive psychology (pp. 139). Psychology Press. https://doi.org/10.4324/9780429318405-2Google Scholar
Stinchcombe, E. J., Lupker, S. J., & Davis, C. J. (2012). Transposed-letter priming effects with masked subset primes: A re-examination of the “relative position priming constraint”. Language and Cognitive Processes, 27(4), 475499. https://doi.org/10.1080/01690965.2010.550928CrossRefGoogle Scholar
Taft, M., & Nguyen-Hoan, M. (2010). A sticky stick? The locus of morphological representation in the lexicon. Language and Cognitive Processes, 25(2), 277296. https://doi.org/10.1080/01690960903043261CrossRefGoogle Scholar
Tsai, J. L., Lee, C. Y., Lin, Y. C., Tzeng, O. J. L., & Hung, D. L. (2006). Neighborhood size effects of Chinese words in lexical decision and reading. Language and Linguistics, 7(3), 659675.Google Scholar
Tsang, Y. K., & Chen, H. C. (2014). Activation of morphemic meanings in processing opaque words. Psychonomic Bulletin & Review, 21(5), 12811286. https://doi.org/10.3758/s13423-014-0589-2CrossRefGoogle ScholarPubMed
Tse, C. S., Yap, M. J., Chan, Y.-L., Sze, W. P., Shaoul, C., & Lin, D. (2017). The Chinese lexicon project: A megastudy of lexical decision performance for 25,000+ traditional Chinese two-character compound words. Behavior Research Methods, 49(4), 15031519. https://doi.org/10.3758/s13428-016-0810-5CrossRefGoogle Scholar
Van Heuven, W. J., Dijkstra, T., Grainger, J., & Schriefers, H. (2001). Shared neighborhood effects in masked orthographic priming. Psychonomic Bulletin & Review, 8(1), 96101. https://doi.org/10.3758/BF03196144CrossRefGoogle ScholarPubMed
Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review. Psychonomic Bulletin & Review, 8(2), 221243. https://doi.org/10.3758/BF03196158CrossRefGoogle Scholar
Wu, Y., Duan, R., Zhao, S., & Tsang, Y. K. (2020). Processing ambiguous morphemes in Chinese compound word recognition: behavioral and ERP evidence. Neuroscience, 446, 249260. https://doi.org/10.1016/j.neuroscience.2020.08.006CrossRefGoogle ScholarPubMed
Yang, H., Hino, Y., Chen, J., Yoshihara, M., Nakayama, M., Xue, J., & Lupker, S. J. (2020). The origins of backward priming effects in logographic scripts for four-character words. Journal of Memory and Language, 113, 104107. https://doi.org/10.1016/j.jml.2020.104107CrossRefGoogle Scholar
Yang, H., Taikh, A., & Lupker, S. J. (2022). A reexamination of the impact of morphology on transposed character priming effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(6), 785797. https://doi.org/10.1037/xlm0001119Google ScholarPubMed
Zhou, X., & Marslen-Wilson, W. (2000). The relative time course of semantic and phonological activation in reading Chinese. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 12451265. https://doi.org/10.1O37//O278-7393.26.5.1245Google ScholarPubMed
Zhou, X., Marslen-Wilson, W., Taft, M., & Shu, H. (1999). Morphology, orthography, and phonology reading Chinese compound words. Language and Cognitive Processes, 14(5–6), 525565. https://doi.org/10.1080/016909699386185CrossRefGoogle Scholar