Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T18:04:29.602Z Has data issue: false hasContentIssue false

The extended features of mirror neurons and the voluntary control of vocalization in the pathway to language

Published online by Cambridge University Press:  11 March 2014

Leonardo Fogassi
Affiliation:
Dipartimento di Neuroscienze, and Istituto Italiano di Tecnologia (RTM), Via Volturno 39, 43125 Parma. E-mail: [email protected]
Gino Coudé
Affiliation:
Dipartimento di Neuroscienze di Parma, V. Volturno 39 andNational Institutes of Health, Poolesville, MD
Pier Francesco Ferrari
Affiliation:
Dipartimento di Neuroscienze di Parma and Istituto Italiano di Tecnologia, V. Volturno 39 andNational Institutes of Health, Poolesville, MD

Abstract

In this book it has been proposed that the mirror system can be a scaffold for building a language-ready brain, because of its property of matching action observation with action execution, a feature that can correspond to the “parity” requirement for communication. In this commentary we will first emphasize two properties of mirror neurons and motor cortex that may have contributed to language: the generalization of the property of understanding action goals and the capacity to decode the goal of action sequences. Then we will propose, based on recent behavioural and neurophysiological data in monkeys, that the vocalization in non-human primates could have reached a partial voluntary control, thus contributing to the emergence of a communicative system relying on the coordination of gestures and utterances.

Type
Comparing the macaque and human brain
Copyright
Copyright © UK Cognitive Linguistics Association 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonini, L., Serventi, F., Simone, L., Rozzi, S., Ferrari, P. F. & Fogassi, L.. 2011. Grasping neurons of monkey parietal and premotor cortices encode action goals at distinct levels of abstraction during complex action sequences. The Journal of Neuroscience 31(15). 58765886.Google Scholar
Bookheimer, S. 2002. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience 25. 151188.Google Scholar
Brosnan, S. F. & de Waal, F. B. M.. 2001. Regulation of vocalizations by chimpanzees finding food in the presence or absence of an audience. Evolution of Communication 4(2). 211224.Google Scholar
Chersi, F., Ferrari, P. F. & Fogassi, L.. 2011. Neuronal chains for actions in the parietal lobe: A computational model. PloS one 6(11). e27652.Google Scholar
Clerget, E., Winderickx, A., Fadiga, L. & Olivier, E.. 2009. Role of Broca's area in encoding sequential human actions: a virtual lesion study. Neuroreport 20(16). 14961499.CrossRefGoogle ScholarPubMed
Coudé, G., Ferrari, P. F., Rodà, F., Maranesi, M., Borelli, E., Veroni, V., Monti, F., Rozzi, S. & Fogassi, L.. 2011. Neurons controlling voluntary vocalization in the macaque ventral premotor cortex. PloS one 6(11). e26822.Google Scholar
Crockford, C., Wittig, R. M., Mundry, R. & Zuberbühler, K.. 2012. Wild chimpanzees inform ignorant group members of danger. Current Biology 22(2). 142146.Google Scholar
Fazio, P., Cantagallo, A., Craighero, L., D'Ausilio, A., Roy, A. C., Pozzo, T., Calzolari, F., Granieri, E. & Fadiga, L.. 2009. Encoding of human action in Broca's area. Brain 132(Pt 7). 19801988.Google Scholar
Ferrari, P. F., Rozzi, S. & Fogassi, L.. 2005. Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neuroscience 17(2). 212226.Google Scholar
Fogassi, L. & Ferrari, P. F.. 2007. Mirror neurons and the evolution of embodied language. Current Directions in Psychological Science 16(3). 136141.Google Scholar
Fogassi, L. & Ferrari, P. F.. 2012. Cortical Motor organization, mirror neurons, and embodied language: An evolutionary perspective. Biolinguistics 6(3–4 ). 308337.CrossRefGoogle Scholar
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F. & Rizzolatti, G.. 2005. Parietal lobe: from action organization to intention understanding. Science 308(5722). 662667.Google Scholar
Gardner, R. A. & Gardner, B. T.. 1969. Teaching sign language to a chimpanzee. Science 165(3894). 664672.Google Scholar
Gómez, J. C. 2007. Pointing behaviors in apes and human infants: A balanced interpretation. Child Development 78(3). 729734.CrossRefGoogle ScholarPubMed
Hagoort, P. 2005. On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences 9(9). 416423.CrossRefGoogle Scholar
Haller, S., Radue, E. W., Erb, M., Grodd, W. & Kircher, T.. 2005. Overt sentence production in event-related fMRI. Neuropsychologia 43(5). 807814.Google Scholar
Hast, M. H., Fischer, J. M., Wetzel, A. B. & Thompson, V. E.. 1974. Cortical motor representation of the laryngeal muscles in Macaca mulatta. Brain Research 73(2). 229240.Google Scholar
Hayes, C. 1951. The ape in our house. New York: Harper.Google Scholar
Hecht, E., Davis, E. L. & Parr, L. A.. 2011. Do chimpanzees “mirror” others' actions? A functional neuroimaging study of action execution and observation. Society For Neuroscience Abstracts 932.05.Google Scholar
Hopkins, W. D., Taglialatela, J. P. & Leavens, D. A.. 2011. Do chimpanzees have voluntary control of their facial expressions and vocalizations? In Vilain, A., Schwartz, J. L., Abry, C. & Vauclair, J. (eds.), Primate communication and human language, 7188. Amsterdam: John Benjamins.Google Scholar
Hostetter, A. B., Cantero, M. & Hopkins, W. D.. 2001. Differential use of vocal and gestural communication by chimpanzees (Pan troglodytes) in response to the attentional status of a human (Homo sapiens). Journal of Comparative Psychology 115(4). 337343.Google Scholar
Jürgens, U. 2002. Neural pathways underlying vocal control. Neuroscience and Biobehavioral Reviews 26(2). 235258.Google Scholar
Kellogg, W. N. & Kellogg, L. A.. 1967. The ape and the child. New York: Hafner Publishing Company.Google Scholar
Leavens, D. A., Hopkins, W. D. & Bard, K. A.. 2005. Understanding the point of chimpanzee pointing: Epigenesis and ecological validity. Current Directions in Psychological science 14(4). 185189.Google Scholar
Leavens, D. A., Hopkins, W. D. & Thomas, R. K.. 2004. Referential communication by chimpanzees (Pan troglodytes). Journal of Comparative Psychology 118(1). 4857.Google Scholar
Leavens, D. A., Russell, J. L. & Hopkins, W. D.. 2010. Multimodal communication by captive chimpanzees (Pan troglodytes). Animal Cognition 13(1). 3340.Google Scholar
Liebal, K., Call, J. & Tomasello, M.. 2004. Use of gesture sequences in chimpanzees. American Journal of Primatology 64(4). 377396.Google Scholar
Lyn, H., Greenfield, P. M., Savage-Rumbaugh, S., Gillespie-Lynch, K. & Hopkins, W. D.. 2011. Nonhuman primates do declare! A Comparison of declarative symbol and gesture use in two children, two bonobos, and a chimpanzee. Language & Communication 31(1). 6374.Google Scholar
MacNeilage, P. F. 1998. The frame/content theory of evolution of speech production. The Behavioral and Brain Sciences 21(4). 499511.Google Scholar
Pinker, S. & Jackendoff, R.. 2005. The faculty of language: What's special about it? Cognition 95(2). 201236.Google Scholar
Pulvermüller, F. & Fadiga, L.. 2010. Active perception: Sensorimotor circuits as a cortical basis for language. Nature Reviews. Neuroscience 11(5). 351360.CrossRefGoogle ScholarPubMed
Rizzolatti, G. & Craighero, L.. 2004. The mirror-neuron system. Annual Review of Neuroscience 27. 169192.Google Scholar
Rochat, M. J., Caruana, F., Jezzini, A., Escola, L., Intskirveli, I., Grammont, F., Gallese, V., Rizzolatti, G. & Umiltà, M. A.. 2010. Responses of mirror neurons in area F5 to hand and tool grasping observation. Experimental Brain Research 204(4). 605616.CrossRefGoogle ScholarPubMed
Sapolsky, D., Bakkour, A., Negreira, A., Nalipinski, P., Weintraub, S., Mesulam, M. M., Caplan, D. & Dickerson, B. C.. 2010. Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia. Neurology 75(4). 358366.CrossRefGoogle ScholarPubMed
Taglialatela, J. P., Russell, J. L., Schaeffer, J. A. & Hopkins, W. D.. 2008. Communicative signaling activates “Broca's” homolog in chimpanzees. Current Biology 18(5). 343348.Google Scholar
Taglialatela, J. P., Russell, J. L., Schaeffer, J. A. & Hopkins, W. D.. 2011. Chimpanzee vocal signaling points to a multimodal origin of human language. PloS one 6(4). e18852.CrossRefGoogle ScholarPubMed
Tanji, J. 2001. Sequential organization of multiple movements: involvement of cortical motor areas. Annual Review of Neuroscience 24. 631651.Google Scholar
Tanji, J. & Hoshi, E.. 2008. Role of the lateral prefrontal cortex in executive behavioral control. Physiological Reviews 88(1). 3757.Google Scholar
Umiltà, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., Jezzini, A., Gallese, V. & Rizzolatti, G.. 2008. When pliers become fingers in the monkey motor system. PNAS 105(6). 22092213.Google Scholar
West, R. A. & Larson, C. R.. 1995. Neurons of the anterior mesial cortex related to faciovocal activity in the awake monkey. Journal of Neurophysiology 74(5). 18561869.Google Scholar
Wilson, S. M., Henry, M. L., Besbris, M., Ogar, J. M., Dronkers, N. F., Jarrold, W., Miller, B. L. & Gorno-Tempini, M. L.. 2010. Connected speech production in three variants of primary progressive aphasia. Brain 133(Pt 7). 20692088.CrossRefGoogle ScholarPubMed