Article contents
Review and comparison of Apriori algorithm implementations on Hadoop-MapReduce and Spark
Published online by Cambridge University Press: 11 July 2018
Abstract
Several Apriori algorithm implementations for mining association rules have been proposed in the literature using the Hadoop-MapReduce framework and, more recently, Spark. However, none of the works have made a detailed assessment of its performance, for example, comparing it with other implementations in various characteristics of data sets. In this work, we present a review of the main algorithms proposed for Hadoop-MapReduce and compared their implementations in a single environment under several different situations. Moreover, these algorithms had their implementations adapted to Spark, and also compared under the same circumstances. Based on the results of the experiments, we present a framework for recommending the Apriori implementation most appropriate for solving a given problem, according to the data set characteristics and minimum required support. The results show that Spark implementations overcome Hadoop-MapReduce implementations at runtime in most experiments. However, there is no single implementation that is the best in all the evaluated situations.
- Type
- Review Article
- Information
- Copyright
- © Cambridge University Press, 2018
References
- 11
- Cited by