Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T01:23:50.340Z Has data issue: false hasContentIssue false

OWL ontology evolution: understanding and unifying the complex changes

Published online by Cambridge University Press:  21 November 2022

Viviane Torres da Silva
Affiliation:
IBM Research Brazil, Rio de Janeiro, Brazil; E-mails: [email protected], [email protected], [email protected], [email protected];
Jéssica Soares dos Santos
Affiliation:
Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ, Brazil; E-mail: [email protected]
Raphael Thiago
Affiliation:
IBM Research Brazil, Rio de Janeiro, Brazil; E-mails: [email protected], [email protected], [email protected], [email protected];
Elton Soares
Affiliation:
IBM Research Brazil, Rio de Janeiro, Brazil; E-mails: [email protected], [email protected], [email protected], [email protected];
Leonardo Guerreiro Azevedo
Affiliation:
IBM Research Brazil, Rio de Janeiro, Brazil; E-mails: [email protected], [email protected], [email protected], [email protected];

Abstract

Knowledge-based systems and their ontologies evolve due to different reasons. Ontology evolution is the adaptation of an ontology and the propagation of these changes to dependent artifacts such as queries and other ontologies. Besides identifying basic/simple changes, it is imperative to identify complex changes between two versions of the same ontology to make this adaptation possible. There are many definitions of complex changes applied to ontologies in the literature. However, their specifications across works vary both in formalization and textual description. Some works also use different terminologies to refer to a change, while others use the same vocabulary to refer to distinct changes. Therefore, there is a lack of a unified list of complex changes. The main goals of this paper are: (i) present the primary documents that identify complex changes; (ii) provide critical analyses about the set of the complex changes proposed in the literature and the documents mentioning them; (iii) provide a unified list of complex changes mapping different sets of complex changes proposed by several authors; (iv) present a classification for those complex changes; and (v) describe some open directions of the area. The mappings between the complex changes provide a mechanism to relate and compare different proposals. The unified list is thus a reference for the complex changes published in the literature. It may assist the development of tools to identify changes between two versions of the same ontology and enable the adaptation of artifacts that depend on the evolved ontology.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burton-Jones, A., Storey, V. C., Sugumaran, V. & Ahluwalia, P. 2005. A semiotic metrics suite for assessing the quality of ontologies. Data and Knowledge Engineering. North-Holland 55(1), 84102.CrossRefGoogle Scholar
Davidovsky, M.,Ermolayev, V. & Tolok, V. 2011. Instance migration between ontologies having structural differences. International Journal on Artificial Intelligence Tools 20(06), 11271156.Google Scholar
Dinh, D., Dos Reis, J. C., Pruski, C., Da Silveira, M. & Reynaud-Delaître, C. 2014. Identifying relevant concept attributes to support map-ping maintenance under ontology evolution. Web Semantics: Science, Services and Agents on the World Wide Web 29, 5366.Google Scholar
Dos Reis, J. C., Da Silveira, M., Dinh, D., Pruski, C. & Reynaud-Delaître, C. 2014. Requirements for implementing mapping adaptation systems. In IEEE 23rd International WETICE Conference, 405410. IEEE.CrossRefGoogle Scholar
Dos Reis, J. C., Dinh, D., Pruski, C., Da Silveira, M. & Reynaud, Delaîtrec. 2013. Mapping adaptation actions for the automatic reconciliation of dynamic ontologies. In 22nd ACM international conference on Information and Knowledge Management, 599608. ACM.Google Scholar
Djedidi, R. & Aufaure, M.-A. 2010. Onto-evoal an ontology evolution approach guided by pattern modeling and quality evaluation. In International Symposium on Foundations of Information and Knowledge Systems, 286305. Springer.Google Scholar
Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D. & Antoniou, G. 2008. Ontology change: classification and survey. The Knowledge Engineering Review 23(2), 117152.CrossRefGoogle Scholar
Galani, T., Papastefanatos, G. & Stavrakas, Y. 2016. A language for defining and detecting interrelated complex changes on RDF(S) knowledge bases. In ICEIS, 472481.Google Scholar
Galani, T., Stavrakas, Y., Papstefanatos, G. & Flouris, G. 2015. Supporting cOmplex changes in RDF(S) knowledge bases. In DIACRON@ESWC, 2833.Google Scholar
Gröner, G., Parreiras, F. S. & Staab, S. 2010. Semantic recognition of ontology refactoring. In International Semantic Web Conference, 273288. Springer.CrossRefGoogle Scholar
Hartung, M., Groß, A. & Rahm, E. 2010. Rule-based generation of diff evolution mappings between ontology versions, ArXiv, vol.abs/1010.0122.Google Scholar
Hartung, M., Groß, A., & Rahm, E. 2013. COnto–diff: generation of complex evolution mappings for life science ontologies. Journal of Biomedical Informatics 46(1), 1532.CrossRefGoogle ScholarPubMed
Herrmannsdoerfer, M., Vermolen, S. & Washsmuth, G. 2001. An extensive catalog of operators for the coupled evolution of metamodels and models. In SLE, LNCS 6563, 163182. Springer.Google Scholar
Javed, M., Abgaz, Y. M. & Pahl, C. 2012. Composite ontology change operators and their customizable evolution strategies. In CEUR.Google Scholar
Javed, M., Abgaz, Y. M. & Pahl, C. 2013. Ontology change management and identification of change patterns. Journal on Data Semantics 2(2–3), 119143.Google Scholar
Kalibatiene, D. & Vasilecas, O. 2011. Survey on ontology languages. In Perspectives in Business Informatics Research. Lecture Notes in Business Information Processing, 90, 124141. Springer.CrossRefGoogle Scholar
Kirsten, T., Gross, A., Hartung, M. & Rahm, E. 2011. Gomma: acomponent-based infrastructure for managing and analyzing life science ontologies and their evolution. Journal of Biomedical Semantics 2(1), 6.CrossRefGoogle ScholarPubMed
Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J. & Linkman, S. 2009. Systematic literature reviews in software engineering - a systematic literature review. Information and Software Technology 51(1), 715.CrossRefGoogle Scholar
Khattak, A., Batool, R., Pervez, Z., Khan, A. & Lee, S. 2013. Ontology evolution and challenges. Journal on Information Science and Engineering 29(5), 851871.Google Scholar
Khattak, A. M., Latif, K., Khan, S. & Ahmed, N. 2008. Ontology recovery and visualization. In 4th International Conference on Next Generation Web Services Practices, 9096. IEEE.Google Scholar
Khattak, A. M., Latif, K. & Lee, S. 2013. Change management in evolving web ontologies. Knowledge-Based Systems 37, 118.CrossRefGoogle Scholar
Khelladi, D., Hebig, R., Bendraou, R., Robin, J. & Gervais, M. 2015. Detecting complex changes during metamodel evolution. In CAiSE, 263278.Google Scholar
Klein, M. & Noy, N. 2003. A component-based framework for ontology evolution. In Workshop on Ontologies and Distributed Systems at IJCAI, 3, 412.Google Scholar
Klein, M. C. A. 2004. Change Management for Distributed Ontologies. PhD dissertation, Vrije Universiteit Amsterdam.Google Scholar
Kondylakis, H. 2010. Ontology Evolution in Data Integration. PhD dissertation, University of Crete.Google Scholar
Kondylakis, H. & Papadakis, N. 2018. EvoRDF: evolving the exploration of ontology evolution. The Knowledge Engineering Review 33, e.12.Google Scholar
Kondylakis, H. & Plexousakis, D. 2012. Ontology evolution: assisting query migration. In Conceptual Modeling, 7532, 331344.Google Scholar
Lantow, B. 2016. OntoMetrics: application of on-line ontology metric calculation. In BIR Workshops.Google Scholar
Lara, A., Henriques, P. R. & Gancarski, A. L. 2017. Visualization of ontology evolution using ontodiff graph. In 6th Symposium on Languages, Applications and Technologies (SLATE 2017). SchlossDagstuhl-Leibniz-Zentrum fuer Informatik.Google Scholar
Lambrix, P., Dragistic, Z., Ivanova, V. & Anslow, C. 2016. Visualization for ontology envolution, In VOILA@ISWC, 5467.Google Scholar
Liu, L., Zhang, P., Fan, R., Zhang, R., & Yang, H. 2014. Modeling ontology evolution with Setpi. Information Sciences 255, 155169.Google Scholar
Lozano-Tello, A. & Gomez-Perez, A. 2004. ONTOMETRIC: a method to choose the appropriate ontology. Journal of Database Management 15, 118.Google Scholar
Maedche, A., Motik, B., Stojanovic, L., Studer, R. & Volz, R. 2002. Managing multiple ontologies and ontology evolution in ontologging. In International Conference on Intelligent Information Processing, 5163. Springer.Google Scholar
Mahfoudh, M., Forestier, G., Thiry, L. & Hassenforder, M. 2015. Algebraic graph transformations for formalizing ontology changes an devolving ontologies. Knowledge-Based Systems 73, 212226.Google Scholar
Najla, S., Wassim, J. & Faiez, G. 2009. Extension of protege to support evolution of ontology. In First International Conference on Advances in Databases, Knowledge, and Data Applications, 149154. IEEE.Google Scholar
Noy, N. & Klein, M. 2004. Ontology evolution: not the same as schema evolution. Knowledge and Information Systems 6(4), 428440.CrossRefGoogle Scholar
Noy, N., Kunnatur, S., Klein, M. & Musen, M. 2004. Tracking changes during ontology evolution. In ISWC, 259273.Google Scholar
Palma, R., Haase, P., Corcho, O. & Gomez Perez, A. 2009. Changerepresentation for owl 2 ontologies. In 5th InternationalWorkshop on OWL: Experiences and Directions. CEUR-WS.Google Scholar
Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D. & Christophides, V. 2009a. On detecting high-level changes in RDF/S KBs. In The Semantic Web—ISWC 2009, 5823, 473488.Google Scholar
Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D. & Christophides, V. 2009b. Formalizing high-level change detection for rdf/s kbs, FORTH-ICS (Technical Report TR-398).Google Scholar
Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D. & Christophides, V. 2013. High-level change detection in RDF(S) KBs. ACM Transactions on Database Systems 38(1), 1:11:42.Google Scholar
Paré, G. & Kitsiou, S. 2017. Methods for literature reviews. In Handbook of eHealth Evaluation: An Evidence-based Approach. University of Victoria. https://www.ncbi.nlm.nih.gov/books/NBK481583/.Google Scholar
Pare, G., Trudel, M.-C., Jaana, M. & Kitsiou, S. 2015. Synthesizing in-formation systems knowledge: a typology of literature reviews. Information and Management 52(2), 183199.CrossRefGoogle Scholar
Pittet, P., Cruz, C. & Nicolle, C. 2013. Modeling changes for shoin (d)ontologies: an exhaustive structural model. In 2013 IEEE Seventh International Conference on Semantic Computing, 104109. IEEE.Google Scholar
Plessers, P. 2006. An Approach to Web-based Ontology Evolution. PhD dissertation, Faculteit van de Wetenschappen.Google Scholar
Rahnama, A. & Barforoush, A. A. 2015. A novel ontology evolution methodology. Journal of Web Engineering 14(3–4), 301324.Google Scholar
Rogozan, D. & Paquette, G. 2005. Managing ontology changes on the semantic web. In The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), 430433. IEEE.Google Scholar
Rogozan, D. & Paquette, G. 2009. Ontology evolution and the referencing of resources in semantic web context. In Semantic Web Technologies for e-Learning.Google Scholar
Stojanovic, L. 2004. Methods and Tools for Ontology Evolution. PhD dissertation, Karlsruhe Institute of Technology, Germany.Google Scholar
Stojanovic, L., Maedche, A., Motik, B. & Stojanovic, N. 2002. User-driven ontology evolution management. In International Conference on Knowledge Engineering and Knowledge Management, 285300. Springer.CrossRefGoogle Scholar
Stuckenschmidt, H. & Van Harmelen, F. 2005. Information Sharing on the Semantic Web. Springer Science and Business Media.Google Scholar
Tang, X. & Yang, F. 2007. A study on dynamic ontology for information integration in e-governmental virtual organization. In International Conference on Wireless Communications, Networking and Mobile Computing, 36003604. IEEE.Google Scholar
Templier, M. & Pare, G. 2015. A framework for guiding and evaluating literature reviews. Communications of the Association for Information Systems 37(1), 6.Google Scholar
Tudorache, T., Nyulas, C., Noy, N. F. & Musen, M. A. 2013. Webprotege: a collaborative ontology editor and knowledge acquisition tool for the web. Semantic Web 4(1), 8999.Google Scholar
Xie, C., Jiang, L. & Cai, H. 2011. Instance-driven ontology evolution mechanism towards enterprise data management. In IEEE 8th International Conference on e-Business Engineering, 2430. IEEE.Google Scholar
Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H. & Motta, E. 2015. Ontology evolution: a process-centric survey. The Knowledge Engineering Review 30(1), 4575.CrossRefGoogle Scholar
Supplementary material: File

da Silva et al. supplementary material

da Silva et al. supplementary material

Download da Silva et al. supplementary material(File)
File 42 KB