Hostname: page-component-5f745c7db-2kk5n Total loading time: 0 Render date: 2025-01-07T05:22:28.386Z Has data issue: true hasContentIssue false

The HealthAgents ontology: knowledge representation in a distributed decision support system for brain tumours

Published online by Cambridge University Press:  28 July 2011

Bo Hu*
Affiliation:
ECS, University of Southampton, Southampton SO17 1BJ, UK; e-mail: [email protected], [email protected], [email protected], [email protected] SAP Research, Belfast BT37 0QB, UK; e-mail: [email protected]
Madalina Croitoru*
Affiliation:
LIRMM, 161 rue ADA, F34392 Montpellier Cedex 5, Montpellier, France; e-mail: [email protected]
Roman Roset*
Affiliation:
MicroArt, Parc Cientific de Barcelona, 08028, Barcelona, Spain; e-mail: [email protected], [email protected], [email protected]
David Dupplaw*
Affiliation:
ECS, University of Southampton, Southampton SO17 1BJ, UK; e-mail: [email protected], [email protected], [email protected], [email protected]
Miguel Lurgi*
Affiliation:
MicroArt, Parc Cientific de Barcelona, 08028, Barcelona, Spain; e-mail: [email protected], [email protected], [email protected]
Srinandan Dasmahapatra*
Affiliation:
ECS, University of Southampton, Southampton SO17 1BJ, UK; e-mail: [email protected], [email protected], [email protected], [email protected]
Paul Lewis*
Affiliation:
ECS, University of Southampton, Southampton SO17 1BJ, UK; e-mail: [email protected], [email protected], [email protected], [email protected]
Juan Martínez-Miranda*
Affiliation:
MicroArt, Parc Cientific de Barcelona, 08028, Barcelona, Spain; e-mail: [email protected], [email protected], [email protected]
Carlos Sáez*
Affiliation:
ITACA—Universidad Politécnica de Valencia, Spain; e-mail: [email protected]

Abstract

In this paper we present our experience of representing the knowledge behind HealthAgents (HA), a distributed decision support system for brain tumour diagnosis. Our initial motivation came from the distributed nature of the information involved in the system and has been enriched by clinicians’ requirements and data access restrictions. We present in detail the steps we have taken towards building our ontology starting from knowledge acquisition to data access and reasoning. We motivate our representational choices and show our results using domain examples used by clinical partners in HA.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds) 2003. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press.Google Scholar
Benslimane, D., Thiran, P., Lu, J., Wyss, C., Göschka, K. (eds) 2007. Third International Workshop on Database Interoperability.Google Scholar
Bizer, C., Seaborne, A. 2004. D2RQ—Treating Non-RDF databases as virtual RDF graphs. In Proceedings of the 3rd International Semantic Web Conference, Lecture Notes in Computer Science 3298, Springer.Google Scholar
Brewster, C., Alani, H., Dasmahapatra, S., Wilks, Y. 2004. Data driven ontology evaluation. In Proceedings of International Conference on Language Resources and Evaluation (LREC04), Lisbon, Portugal.Google Scholar
Bussler, C., Tannen, V., Fundulaki, I. (eds) 2005. Semantic Web and Databases, Second International Workshop, SWDB 2004, Toronto, Canada, 3372 (August 29–30, 2004, Revised Selected Papers).Google Scholar
Cohen, W., Ravikumar, P., Fienberg, S. 2003. A comparison of string distance metrics for name-matching tasks. In IIWeb, 73–78.Google Scholar
Costa, P. 2005. Bayesian Semantics for the Semantic Web. PhD thesis, School of Information Technology and Engineering, George Mason University.Google Scholar
Damasio, H. 1995. Human Brain Anatomy in Computerized Images. Oxford University Press.Google Scholar
Favre, J., Taha, J. M., Burchiel, K. J. 2002. An analysis of the respective risks of hematoma formation in 361 consecutive morphological and functional stereotactic procedures. Journal of Neurosurgery 50(1), 5657.Google Scholar
Field, M., Witham, T., Flickinger, J., Kondziolka, D., Lunsford, L. 2001. Comprehensive assessment of hemorrhage risks and outcomes after stereotactic brain biopsy. Journal of Neurosurgery 94, 545551.Google Scholar
Fodor, J. 2004. Having concepts: a brief refutation of the twentieth century. Mind and Language 19(1), 2947.Google Scholar
Gangemi, A., Catenacci, C., Ciaramita, M.Lehmann, J. 2006. Modelling ontology evaluation and validation. In Proceedings of the 3rd European Semantic Web Conference, Lecture Notes in Computer Science 3298, pp. 140–154. Springer.Google Scholar
González-Vélez, H., Mier, M., Julià-Sapé, M., Arvanitis, T. N., García-Gómez, J. M., Robles, M., Lewis, P. H., Dasmahapatra, S., Dupplaw, D., Peet, A., Arús, C., Celda, B., Huffel, S. V., Lluch i Ariet, M. 2009. HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. Applied Intelligence 30(3), 191202.Google Scholar
Gruber, T. 1993. A translation approach to portable ontology specification. Knowledge Acquisition 5(2), 199221.Google Scholar
Hahn, U., Schulz, S., Romacker, M. 1999. Part-whole reasoning: a case study in medical ontology engineering. IEEE Intelligent Systems 14(5), 5967.Google Scholar
Hall, W. 1998. The safety and efficacy of stereotactic biopsy for intracranial lesions. Cancer 82, 17491755.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Herman, I., Melançon, G., Marshall, M. S. 2000. Graph visualization and navigation in information visualization: a survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 2443.Google Scholar
Hu, B., Dasmahapatra, S., Dupplaw, D., Lewis, P., Shadbolt, N. 2007. Reflections on a medical ontology. International Journal of Human–Computer Studies 65(7), 569582.Google Scholar
Julià-Sapé, M., Acosta, D., Majós, C., Moreno-Torres, A., Wesseling, P., José Acebes, J., Griffiths, J. R., Arús, C. 2006. Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database. Journal of Neurosurgery 105(1), 614.Google Scholar
Kalfoglou, Y., Hu, B., Reynolds, D.Shadbolt, N. 2005. Semantic Integration Technologies, 6th Month Deliverable. University of Southampton and HP Labs.Google Scholar
Lukasiewicz, T. 2008. Probabilistic description logic programs under inheritance with overriding for the semantic web. International Journal of Approximate Reasoning 49(1), 1834.Google Scholar
Matthews, M. 2008. EbSS: evaluating on-line information retrieval dedicated to brain tumour. In Proceedings of the HealthAgents Workshop at the 8th Congress of the European Association of Neuro-Oncology (EANO2008).Google Scholar
Miller, G. A. 1995. WordNet; a Lexical Database for English. Communications of the ACM 38(11), 3941.Google Scholar
Mol, A 2003. The Body Multiple: Ontology in Medical Practice. Duke University Press.Google Scholar
Noy, N., Musen, M. 2004. Ontology versioning in an ontology management framework. IEEE Intelligent Systems 19(4), 613.Google Scholar
Quine, W. V. O. 1953. On what there is. In From a Logical Point of View, Harper & Row.Google Scholar
Rahm, E., Bernstein, P. 2001. A survey of approaches to automatic schema matching. The VLDB Journal 10, 334350.Google Scholar
Rector, A. 1999. Clinical terminology: why is it so hard. Methods of Information in Medicine 38, 239252.Google Scholar
Rosse, C., Mejino, J. 2003. A reference ontology for biomedical informatics: the foundational model of anatomy. Journal of Biomedical Informatics 36(6), 478500.Google Scholar
Rubin, J. 1994. Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests. John Wiley & Sons.Google Scholar
Wright, P., Monk, A. 1990. The use of think-aloud evaluation methods in design. ACM SIGCHI Bulletin 23(1), 5557.Google Scholar