Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T10:03:27.309Z Has data issue: false hasContentIssue false

Dr. Eureka: a humanoid robot manipulation case study

Published online by Cambridge University Press:  19 December 2019

Lin Yu-Ren
Affiliation:
106, Heping E. Road, Sec. 1, Taipei 10610, Taiwan, e-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
Guilherme Henrique Galelli Christmann
Affiliation:
106, Heping E. Road, Sec. 1, Taipei 10610, Taiwan, e-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
Ricardo Bedin Grando
Affiliation:
106, Heping E. Road, Sec. 1, Taipei 10610, Taiwan, e-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
Rodrigo Da Silva Guerra
Affiliation:
106, Heping E. Road, Sec. 1, Taipei 10610, Taiwan, e-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
Jacky Baltes
Affiliation:
106, Heping E. Road, Sec. 1, Taipei 10610, Taiwan, e-mails: [email protected], [email protected], [email protected], [email protected], [email protected]

Abstract

To this day, manipulation still stands as one of the hardest challenges in robotics. In this work, we examine the board game Dr. Eureka as a benchmark to encourage further development in the field. The game consists of a race to solve a manipulation puzzle: reordering colored balls in transparent tubes, in which the solution requires planning, dexterity and agility. In this work, we present a robot (Tactical Hazardous Operations Robot 3) that can solve this problem, nicely integrating several classical and state-of-the-art techniques. We represent the puzzle states as graph and solve it as a shortest path problem, in addition to applying computer vision combined with precise motions to perform the manipulation. In this paper, we also present a customized implementation of YOLO (called YOLO-Dr. Eureka) and we implement an original neural network (NN)-based incremental solution to the inverse kinematics problem. We show that this NN outperforms the inverse of the Jacobian method for large step sizes. Albeit requiring more computation per control cycle, the larger steps allow for much larger movements per cycle. To evaluate the experiment, we perform trials against a human using the same set of initial conditions.

Type
Research Article
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baltes, J., Tu, K.-Y., Sadeghnejad, S. & Anderson, J. 2017. Hurocup: competition for multi-event humanoid robot athletes. The Knowledge Engineering Review 32, E1.CrossRefGoogle Scholar
Bradski, G. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools.Google Scholar
Calvo-Varela, L., Regueiro, C. V., Canzobre, D. S. & Iglesias, R. 2016. Development of a nao humanoid robot able to play tic-tac-toe game on a tactile tablet. In Robot 2015: Second Iberian Robotics Conference, 203–215, Springer.CrossRefGoogle Scholar
Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269271.CrossRefGoogle Scholar
Girshick, R. B. 2015. Fast R-CNN. CoRR, vol. abs/1504.08083.Google Scholar
Goodman, D. & Keene, R. 1977. Man Versus Machine: Kasparov Versus Deep Blue. H3 Inc.Google Scholar
Ioffe, S. & Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167.Google Scholar
Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I. & Osawa, E. 1995. Robocup: The Robot World Cup Initiative.Google Scholar
Kroger, T., Finkemeyer, B., Winkelbach, S., Eble, L.-O., Molkenstruck, S. & Wahl, F. M. 2008. A manipulator plays Jenga. IEEE Robotics & Automation Magazine 15(3), 7984.CrossRefGoogle Scholar
Lloyd, S. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129137.CrossRefGoogle Scholar
Montenegro, F. J. C., Grando, R. B., Librelotto, G. R. & Guerra, R. d. S. 2018. Neural network as an alternative to the jacobian for iterative solution to inverse kinematics. In 2018 XV Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), João Pessoa, Brazil, IEEE.Google Scholar
Redmon, J. & Farhadi, A. 2017. Yolo9000: Better, faster, stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July.CrossRefGoogle Scholar
Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. 2016. You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June.CrossRefGoogle Scholar
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. 2016. Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484.CrossRefGoogle ScholarPubMed
Spong, M. W., Hutchinson, S., Vidyasagar, M., et al. 2006. Robot Modeling and Control.Google Scholar
Zeiler, M. D. & Fergus, R. 2013. Visualizing and understanding convolutional networks, CoRR, vol. abs/1311.2901.Google Scholar