Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T05:31:04.579Z Has data issue: false hasContentIssue false

Visual reasoning with graph-based mechanisms: the good, the better and the best

Published online by Cambridge University Press:  07 August 2013

Michel Chein
Affiliation:
LIRMM, 161 rue ADA, F34392 Montpellier, Cedex 5, France; e-mail: [email protected], [email protected], [email protected]
Marie-Laure Mugnier
Affiliation:
LIRMM, 161 rue ADA, F34392 Montpellier, Cedex 5, France; e-mail: [email protected], [email protected], [email protected]
Madalina Croitoru
Affiliation:
LIRMM, 161 rue ADA, F34392 Montpellier, Cedex 5, France; e-mail: [email protected], [email protected], [email protected]

Abstract

This paper presents a graph-based knowledge representation and reasoning language. This language benefits from an important syntactic operation, which is called a graph homomorphism. This operation is sound and complete with respect to logical deduction. Hence, it is possible to do logical reasoning without using the language of logic but only graphical, thus visual, notions. This paper presents the main knowledge constructs of this language, elementary graph-based reasoning mechanisms, as well as the graph homomorphism, which encompasses all these elementary transformations in one global step. We put our work in context by presenting a concrete semantic annotation application example.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aissaoui, G., Genest, D., Loiseau, S. 2003. Cognitive map of conceptual graphs: a graphical model to help for decision. In ICCS, de Moor, A., Lex, W. & Ganter, B. (eds), Lecture Notes in Computer Science 2746, 337–350 Springer, ISBN 3-540-40576-3.Google Scholar
Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider, P. F. (eds) 2003. The Description Logic Handbook. Cambridge University Press.Google Scholar
Baget, J. F. 2005. RDF entailment as a graph homomorphism. In Proceedings of ISWC'05. Galway, Ireland.CrossRefGoogle Scholar
Bos, C., Botella, B., Vanheeghe, P. 1997. Modeling and simulating human behaviors with conceptual graphs. In Proceedings of ICCS'97, Lecture Notes in Artificial Intelligence 1257, 275–289. Springer.CrossRefGoogle Scholar
Carloni, O., Leclère, M., Mugnier, M.-L. 2006. Introducing graph-based reasoning into a knowledge management tool: an industrial case study. In Proceedings of IEA/AIE. 590–599. Annecy, France.CrossRefGoogle Scholar
Chauvin, L., Genest, D., Loiseau, S. 2008. Contextual cognitive map. In ICCS, Eklund, P. W. & Haemmerlé, O. (eds), Lecture Notes in Computer Science 5113, 231–241, Springer. ISBN 978-3-540-70595-6.Google Scholar
Chein, M., Mugnier, M.-L. 1992. Conceptual graphs: fundamental notions. Revue d'Intelligence Artificielle 60(4), 365406.Google Scholar
Chein, M., Mugnier, M. 2009. Graph-based Knowledge Representation: Computational Foundations of Conceptual Graphs. Springer.Google Scholar
Genest, D., Chein, M. 2005. A Content-search information retrieval process based on conceptual graphs. Knowledge and Information Systems (KAIS) 8, 292309.CrossRefGoogle Scholar
Hayes, P. 2004. RDF Semantics. W3C Recommendation. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.Google Scholar
Horst, H. 2004. Extending the RDFS entailment lemma. In Proceedings of the 3rd International Semantic Web Conference ISWC'04, Sheila A. McIlraith, Dimitris Plexousakis & Frank van Harmelen (eds). Lecture Notes in Computer Science 3298, 77–91. Springer.CrossRefGoogle Scholar
Lalande, S., Staykova, K., Chein, M., Gutierrez, A., Saraydarova, V., Dochev, D. 2009. Using domain knowledge to speed up the annotation of digital content with conceptual graphs. Cybernetics and Information Technology 90(3), 2238.Google Scholar
Lehman, F. 1992. Semantics Networks in Artificial Intelligence. Pergamon Press.Google Scholar
Masterman, M. 1962. Semantic message detection for machine translation, using an interlingua. In International Conference on Machine Translation of Languages and Applied Language Analysis, 438475.Google Scholar
Moreau, N., Leclère, M., Chein, M., Gutierrez, A. 2007. Formal and graphical annotations for digital objects. In Proceedings of the International Workshop on Semantically Aware Document Processing and Indexing (SADPI'07), ACM Digital Library, ACM International Conference Proceeding Series 259, 69–78. ACM.CrossRefGoogle Scholar
Novak, J., Canas, A. 2006. The origins of the concept mapping tool and the continuing evolution of the tool. Information Visualization Journal 5, 175184.CrossRefGoogle Scholar
Raimbault, T., Genest, D., Loiseau, S. 2005. A new method to interrogate and check uml class diagrams. In ICCS, Dau, F., Mugnier, M.-L. & Stumme, G. (eds), Lecture Notes in Computer Science 3596, 353–366. Springer, ISBN 3-540-27783-8.Google Scholar
Richens, R. 1956. Programming for mechanical translation. Mechanical Translation 3.Google Scholar
Shapiro, S. 1979. The sneps semantic network processing system. In The Representation and Use of Knowledge by Computers, Findler, N.V. (ed.). Academic Press, New York, 179203.Google Scholar
Shapiro, S. 2000. Sneps: A logic for natural language understanding and commonsense reasoning. In Natural Language Processing and Knowledge Representation: Language for Knowledge and Knowledge for Language, Lucja Iwanska & Stuart C. Shapiro (eds), 175195.Google Scholar
Shaw, M., Gaines, B. 1995. Knowledge and requirements engineering. In Proceedings of the 9th Banff Knowledge Accquisition For Knowledge-Based Systems Workshop.Google Scholar
Sowa, J. F. 1976. Conceptual graphs. IBM Journal of Research and Development 20(4), 336375.CrossRefGoogle Scholar
Sowa, J. F. 1984. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley.Google Scholar
Woods, W., Schmolze, J. 1992. The kl-one family. Computers Mathematical Applications 23, 133177.CrossRefGoogle Scholar