Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T05:07:33.217Z Has data issue: false hasContentIssue false

Sample decisions with description and experience

Published online by Cambridge University Press:  01 January 2023

Ronald Klingebiel*
Affiliation:
Management Department, Frankfurt School of Finance and Management
Feibai Zhu
Affiliation:
Management Department, Frankfurt School of Finance and Management
*
Rights & Permissions [Opens in a new window]

Abstract

Decision makers weight small probabilities differently when sampling them and when seeing them stated. We disentangle to what extent the gap is due to how decision makers receive information (through description or experience), the literature’s prevailing focus, and what information they receive (population probabilities or sample frequencies), our novel explanation. The latter determines statistical confidence, the extent to which one can know that a choice is superior in expectation. Two lab studies, as well as a review of prior work, reveal sample decisions to respond to statistical confidence. More strongly, in fact, than decisions based on population probabilities, leading to higher payoffs in expectation. Our research thus not only offers a more robust method for identifying description-experience gaps. It also reveals how probability weighting in decisions based on samples — the typical format of real-world decisions — may actually come closer to an unbiased ideal than decisions based on fully specified probabilities — the format frequently used in decision science.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
The authors license this article under the terms of the Creative Commons Attribution 4.0 License.
Copyright
Copyright © The Authors [2022] This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction

Many real-world decisions are based on samples, some small, some big, but none infinitely so. Therefore, inferences about the true state of nature are necessary. A manager might, for example, face the business decision stylized in Figure 1. Either she decides to continue with her firm’s existing product, for a more or less guaranteed return of $2m, or she invests in making a risky new product. In her business experience, she has observed one other firm’s launch of the new product returning $12m, while four other firms had their new product return $0.

Figure 1: Canonical choice-set format. Opting for the safe choice would underweight the small probability of success in the risky choice.

Whether or not the manager foregoes the old product and launches the new product depends on her weighting of the small chance of success. Research suggests that people underweight such rare-event probabilities more often when they receive their information through sampling experience, as our manager does, than when they base their decisions on described probabilities (Reference Hertwig and ErevHertwig & Erev, 2009; Reference Erev, Ert, Plonsky, Cohen and CohenWulff et al., 2018).

The canonical lab experiment rendering this description-experience gap (DE-Gap) compares the decisions of people who know that a percentage of draws from each lottery is successful, with those of people who sample the lotteries and happen to observe some draws to be successful and others not. Objectively, samplers are afforded less certainty of whether or not one lottery is better than another in expectation, than decision makers who receive fully specified probabilities for lotteries’ underlying outcome probabilities (Reference de Palmade Palma et al., 2014).

This difference between treatments can be objectively quantified. Statistical confidence — the posterior probability of a rare event that makes one choice superior to its alternative in expectation — ranges between 0 and 1 (Reference Bayes, Price and CantonBayes et al., 1763; Reference HillHill, 1968). Assuming an uninformed prior, the five sample draws (four new-product failures, one success) in an experience-treatment implementation of our product-decision example afford 26% statistical confidence in the expected value of the old product exceeding that of the new product alternative. This would fall to 22% if the sample size were ten times larger and the proportion of success unchanged. A description treatment with a stated success probability of 20%, however, would provide exactly 0% statistical confidence that the old product offers superior value in expectation (see Table 1).

Table 1: Statistical Confidence in Experimental Treatments

Notes. Statistical confidence p(EV UWEV Alt) denotes the likelihood p that the underlying probability of a risky outcome is such that the expected value EV of the as-if-underweighting choice UW exceeds that of an alternative choice Alt. In the example, the safe prospect of $2 constitutes the as-if-underweighting choice. By choosing as if they underweight, decision makers are better off in expectation only if the underlying probability for the $12 outcome is approximately 16.7% or lower. See Section 3 for a formal derivation of statistical confidence.

If statistical confidence in the underweighting choiceFootnote 1 is zero in a description treatment and greater than zero in an experience treatment, as illustrated with the product-decision example, it is easy to imagine that description-treatment subjects less likely choose as if they underweight than experience-treatment subjects. In other cases, the description-treatment probability that the underweighting choice is superior to the alternative is 1, and the experience-treatment posterior is below 1. Choosing as if underweighting might then be less likely in experience treatments than description treatments.

DE-Gap studies entail varying amounts of either mismatch in statistical confidence between treatments. Underweighting found in the treatments may thus balance out, yield a positive gap, or a negative gap, on average. Not surprisingly, research reports negative (e.g., Reference Glöckner, Hilbig, Henninger and FiedlerGlöckner et al., 2016), positive (e.g., Reference Ungemach, Chater and StewartUngemach et al., 2009), as well as insignificant (e.g., Reference Camilleri and NewellCamilleri & Newell, 2011b) overall DE-Gaps. Therefore, it is important to disentangle to what extent DE-Gaps are caused by differences in statistical confidence between sample and population statistics as opposed to differences in the process of attaining information through description and experience.

We introduce an experimental design for separating these differences. We first ascertain the typical DE-Gap between an Experienced-Sample treatment and a Described/Probabilities treatment, using a yoked version of the classic design that is robust to sampling error and amplification (Reference Hertwig and PleskacHertwig & Pleskac, 2010). We then add a treatment describing samples (see Table 1), rather than populations. The only difference between the new Described-Samples treatment and a conventional Experienced-Samples treatment is the subjects in the latter sample themselves, whereas subjects in the former receive a sample record. The new treatment thus entails inference but not experience.

For the literature’s five canonical choice sets (see Table 2), we find that experiencing samples leads to choices that imply a lower weighting of small probabilities than seeing descriptions of the same samples, an effect that can be ascribed to differences in how information is attained. We also find lower weights for small probabilities in decisions based on described samples than decisions based on described probabilities, an effect that can be ascribed to differences in what information is attained. We replicate this finding in two experiments, using both group-mean difference tests and model-fitting approaches.

Table 2: Choice Sets

Notes. Risky choices render one outcome with probability p and another with probability 1−p. Safe choices have one outcome only. Prior Use indicates the number of papers reviewed by Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018) that include the choice set. We compare prior results to our own.

Econometric analysis then offers detail on the gap between described samples and described probabilities. Sample decisions display strong sensitivity to statistical confidence. If sample confidence exceeds the zero confidence of yoked decisions with described probabilities, underweighting is higher. If sample confidence is lower than the full confidence of yoked decisions with described probabilities, underweighting is lower. Interestingly, when statistical confidence is comparable across treatments, sample decisions prove more sensitive: Near zero confidence, sample decisions underweight less, and near full confidence, they underweight more. Decision makers thus place lower weights on events when sample evidence strongly suggests them to be rare than when stated probabilities confirm them to be so, and vice versa. As a result, sample subjects end up maximizing their payoff more often.

Our work, therefore, helps explain portions of previously reported DE-Gaps (Reference Rakow, Demes and NewellRakow et al., 2008; Reference Camilleri and NewellCamilleri & Newell, 2019) and additionally informs theory on decision making under uncertainty (Reference Einhorn and HogarthEinhorn & Hogarth, 1985; Reference Baillon, Bleichrodt, Keskin, L’Haridon and LiBaillon et al., 2017; Reference Barron and YechiamErev et al., 2017; Reference Kutzner, Read, Stewart and BrownKutzner et al., 2017). Sample decisions appear sensitive to statistical confidence in the desirability of risky choices, more so than decisions based on full information.

2 Risky Choice with Description and Experience

Decision makers seldom receive information that fully specifies the probabilities of realizing the outcomes of decision alternatives, but rather have to infer this information from whatever samples they may have observed in the past. Experimental designs explicitly aiming to capture such settings (starting with Reference Barron and ErevBarron & Erev, 2003; Reference Hertwig, Barron, Weber and ErevHertwig et al., 2004; Reference Weber, Shafir and BlaisWeber et al., 2004) ask subjects to choose between two lotteries. Typically, the single possible outcome of a safe lottery falls in between the two possible outcomes of another, risky lottery, one outcome of which occurs rarely. This design mirrors the stylized opening example of the manager observing outcomes for old and new products before investing in one herself. Choices observed in the lab reveal that people behave as if they underweight rare outcomes when they learn about probabilities through sampling experience. When people receive probability descriptions, they underweight less or even overweight (Reference Bolstad and CurranKahneman & Tversky, 1979). This gap in underweighting is understood as the description-experience gap.

Statistical features of a sampling contexts that have already been shown to explain parts of the DE-Gap include sampling error and amplification as well as sampling-space awareness. When subjects draw samples from two money machines before deciding which to play for money, many stop early (Reference Hertwig and ErevHertwig & Erev, 2009; Reference Hau, Pleskac and HertwigHau et al., 2010). The experienced outcome frequencies can, therefore, differ substantially from money-machines’ underlying probabilities. Over- and under-sampling rare events is common. Some subjects might even sample only the rare event or no rare events at all.

As a consequence of such sampling errors, the mean of experienced sample outcomes for a risky choice differs from the outcome of a safe alternative more strongly in experience treatments than the choice means do in description treatments (Reference Hertwig and PleskacHertwig & Pleskac, 2010). Coupled perhaps with a tendency to overestimate the representativeness of small samples (Reference Tversky and KahnemanTversky & Kahneman, 1971), this expected-value amplification then engenders decision behavior that departs from behavior observed in description treatments.

Sampling error can be eliminated by mandating a fixed amount of sampling (Reference Ungemach, Chater and StewartUngemach et al., 2009; Reference Camilleri and NewellCamilleri & Newell, 2011a; Reference Aydogan and GaoAydogan & Gao, 2020), incentivizing prolonged sampling (e.g., Reference Hau, Pleskac, Kiefer and HertwigHau et al., 2008), or making description probabilities reflect experienced frequencies, in a process called yoking (Reference Rakow, Demes and NewellRakow et al., 2008; Reference Hau, Pleskac and HertwigHau et al., 2010; Reference Hertwig and PleskacHertwig & Pleskac, 2010). These studies show heterogeneous results: the gap persists in some studies (e.g., Reference Jessup, Bishara and BusemeyerJessup et al., 2008; Reference Camilleri and NewellCamilleri & Newell, 2011a) and disappears in others (e.g., Reference Rakow, Demes and NewellRakow et al., 2008). In the absence of sampling error, the average description-experience gap is smaller (Reference Erev, Ert, Plonsky, Cohen and CohenWulff et al., 2018).

Experimenters also often keep experience-treatment subjects unaware of the sample space. No information is provided about the number and the magnitude of possible outcomes for the money machine that is to be sampled. This sample-space unawareness introduces information asymmetry with description-treatment subjects (Reference Hadar and FoxHadar & Fox, 2009). Experience-treatment subjects can learn about possible outcomes only during sampling, and some do not draw a rare outcome. They thus naturally underweight the possibility of its existence (Reference de Palmade Palma et al., 2014).Footnote 2 Conversely, if subjects do happen to draw two different outcomes for one machine, they may expect the alternative machine to have multiple outcomes too. What looks like underweighting of a rare event may actually be overweigthing of a non-existent event (Reference Glöckner, Hilbig, Henninger and FiedlerGlöckner et al., 2016; Reference He and DaiHe & Dai, 2022).Footnote 3 Studies that explicitly stated sample spaces to participants found little underweighting and even overweighting (Reference Erev, Glozman and HertwigErev et al., 2008; Reference Hadar and FoxHadar & Fox, 2009).

Behavioral explanations for the description-experience gap in settings without feedbackFootnote 4 center on recency, order, and primacy effects that are at play when people receive information iteratively, rather than in summary form. More recent draws have a stronger influence on decision making than earlier draws that might fade from memory (e.g., Reference Stewart, Chater and BrownStewart et al., 2006; Reference Barron and YechiamBarron & Yechiam, 2009; Reference Rakow and RahimRakow et al., 2010; Reference KopsacheilisKopsacheilis, 2018). Since rare events occur less often, they are less often part of the most recent set of sample draws. In the absence of yoking, subjects may additionally use heuristics for when to stop sampling that can produce recency effects (Reference Erev, Ert, Plonsky, Cohen and CohenWulff et al., 2018). Beyond recency, it sometimes matters which outcome is drawn first (Reference Rakow and RahimRakow & Rahim, 2010) and in which order outcomes are drawn thereafter, with rare occurrences being processed disadvantageously (Reference Hogarth and EinhornHogarth & Einhorn, 1992).

Our work proposes the novel mechanism of statistical confidence as an explanation of DE-Gaps, even if these were observed in yoked and otherwise carefully controlled settings. When sampling error is absent and sample frequencies match stated probabilities, the statistical properties of decision problems in experience treatments continue to differ from those in description treatments, requiring inference. And where inferred and stated probabilities differ, gaps in decision behavior may occur. We provide an experimental design that permits separation of DE-Gaps’ inference component, driven by variation in statistical confidence in the information that is attained, from the experience component, driven by variation in the process with which information is attained.

3 Statistical Confidence and As-If-Underweighting Behavior

Previous studies compare description treatments containing fully specified probabilities with experience treatments containing samples from which probabilities can only be inferred. In experience treatments, subjects learn about sample frequencies that can help estimate underlying probabilities, albeit imprecisely, as per Bayes’ theorem (Reference Bayes, Price and CantonBayes et al., 1763). But no matter how long subjects sample and how many samples they draw, they cannot identify the underlying probabilities as fully as their counterparts in description treatments. This is true even in the absence of sampling error and amplification, that is when described probabilities mirror sampling frequencies. Sample-treatment subjects are thus afforded different statistical confidence in whether or not the expected payoff from an as-if-underweighting choice exceeds that of the alternative choice.

Statistical confidence is a property of the decision problem and can be understood as the posterior likelihood of a desired outcome distribution given sample draws (e.g., Reference HillHill, 1968; Reference LaplaceLaplace, 1986). Statistical confidence is not to be mistaken for people’s subjective confidence in outcome probabilities (Reference Bazerman and MooreBazerman & Moore, 2013; Reference Lejarraga and LejarragaLejarraga & Lejarraga, 2020). Exact elicitation of the latter is hard and not a concern of this paper.Footnote 5 Instead, even with subjective confidence unknown, we can observe to which extent choice behavior varies with decision problems’ statistical properties such as posterior likelihood.Footnote 6

There are multiple ways of calculating statistical confidence, including those based on Bayesian inference (cf. Reference Pires and AmadoPires & Amado, 2008) and frequentist statistics (cf. Reference Brown, Cai and DasGuptaBrown et al., 2001). Their suitability differs slightly in limit cases, due to different assumptions about priors and functional forms. An evaluation of their computational efficacy would go beyond the confines of this paper. Important for our purposes is that any method values statistical confidence strictly between 0 and 1 in sample situations, and exactly 0 or 1 for fully described probabilities.

To illustrate how posteriors can influence choice behavior, we derive the statistical confidence that the manager in the opening decision example could have in the superiority of a choice that would be classified as-if-underweighting in DE-Gap studies (cf. Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al., 2018). The manager observed new-product performance on five occasions, one rendering a successful outcome of $12m and four rendering unsuccessful outcomes of $0. The alternative to the risky new product return is the old-product’s safe return of $2m. Choosing the old-product (safe) would be as if she underweighted the small probability of a high new-product return (risky). If by contrast our example problem were one with a small probability of a low outcome, the risky choice would be labeled as underweighting instead (and our example calculations reversed).

A risk-neutral manager would choose the safe old product if its expected value exceeded that of the risky new product (EV UWEV Alt). This is the case when the underlying probability of the high new-product outcome p($12m) is smaller than 16.7%. The conditional probability of p($12m) being no larger than 16.7% (Event A) given the sample for five draws (Event B) can be expressed with Bayes’ theorem

We assume for now that investing in a new product is a Bernoulli trial (as our experimental lotteries indeed are). Let y denote the number of successful outcomes and n denote the number of draws. So the probability of observing one successful outcome in five draws can be stated as

with p(θ) being the set of possible probabilities between 0 and 1. We assume that the manager had a uniform prior over all those possible probabilities: p(θ) ∼ U(0,1). We thus have the proportionality

The posterior density θy(1−θ)ny is beta distributed (Reference Bernardo and SmithBernardo & Smith, 1994; Reference Bolstad and CurranBolstad & Curran, 2016), specifically

Knowing n and y, we can compute the statistical confidence in the expected return of the old product being greater than that of the new product (p(EV UWEV Alt )= F(0.167;2,5) = 0.26; F denotes the cumulative distribution function). Given her sample experience, the manager can be 26% confident that the new product will have a success rate of below 16.7%, at which point the old product becomes the better choice. By comparison, another risk-neutral manager, who is told that the new-product success rate is exactly 20%, would have statistical confidence of 0 that the old product is the better choice in expectation. One who is told that the new-product success rate is a guaranteed 10%, would be 100% confident, statistically, that the old product yields more in expectation than the new product. Sample subjects’ statistical confidence, by contrast, is strictly bigger than 0 and strictly smaller than 1 for any frequency value a study on description versus experience might provide to sample subjects. Figure 2 illustrates this for a range of possible samples in the new-product choice.

Figure 2: Statistical Confidence for the Opening Example of New-Product Choice

Value labels indicate statistical confidence p(EV UWEV Alt) in a sample treatment. Marker symbols indicate the corresponding statistical confidence — either — in a description treatment with probabilities yoked to sample proportions.

Therefore, sample frequencies are less informative than fully specified probabilities with the same values. When description-treatment subjects read “$12 with a probability of 20%, and $0 otherwise”, they know the outcome probabilities, while experience-treatment subjects cannot, even if the sample frequencies mirror those stated probabilities. This may influence samplers’ propensity to choose as if they underweight. Only when sample sizes are large, sample posteriors and population probabilities converge (Reference Ostwald, Starke and HertwigOstwald et al., 2015). Consequently, stating to description-treatment participants the probabilities that experience-treatment participants experienced as sample-outcome proportions not only manipulates how information is received, but also what information is received. Statistical confidence levels differ.

Some previously observed DE-Gaps thus likely have an inference component and an experience component. Appendix Figure B1 depicts simultaneous variation in underweighting and statistical confidence, based on the meta-analysis of Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018). Although prior studies have not identified the two DE-Gap components directly, some have suppressed the inference component (alongside sampling error) by design. Reference Hau, Pleskac and HertwigHau et al. (2010), for example, found that the DE-Gap in the weighting of small probabilities is smaller for a sample size of 50 than for a sample size of 5. Analyzing decisions based on a fixed sample size of 300, Reference Jarvstad, Hahn, Rushton and WarrenJarvstad et al. (2013) found no significant departure from decisions based on fully specified probabilities.

Similarly, making subjects sample a population exhaustively without replacement, so that they receive complete information about outcome probabilities, rendered results consistent with non-significant (Reference Hilbig and GlöcknerHilbig & Glöckner, 2011; Reference Aydogan and GaoAydogan & Gao, 2020; Reference Cubitt, Kopsacheilis and StarmerCubitt et al., 2022), negative (Reference Gottlieb, Weiss and ChapmanGottlieb et al., 2007), or positive (Reference Camilleri and NewellCamilleri & Newell, 2019) DE-Gaps. Another study mandating exhaustive sampling found that subjects who were told that a sample of 40 represented the population perfectly decided differently from subjects who did not know, pointing towards sensitivity to even minor variations in statistical confidence (Reference Cubitt, Kopsacheilis and StarmerCubitt et al., 2022).

Still missing from the literature are means to isolate the experience and inference components of DE-Gaps in the context of the non-exhaustive samples that real-life decision makers typically encounter. Our empirical design is geared toward achieving such isolation, accounting for the role of statistical confidence.

4 Methods

4.1 Identification Strategy

Our study disentangles experimentally the experience and inference components of the DE-Gap in the weighting of small probabilities, and then traces econometrically the role of statistical confidence. Our focal underweighting variable is indicated by the proportion of subjects choosing as if they underweight the probability of a rare event (Reference Hertwig, Barron, Weber and ErevHertwig et al., 2004), and triangulated by the probability-weighting parameter γ in estimation models of cumulative prospect theory (Reference Abdellaoui, L’Haridon and ParaschivAbdellaoui et al., 2011).

We adopt a conservative replica of the classic DE-Gap experiment (cf. Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al., 2018), yoking a Described-Probabilities treatment to an Experienced-Samples treatment. To disentangle the two DE-Gap components, we add a Described-Samples treatment. The difference between Experienced Samples and Described Samples constitutes the experience component and that between Described Samples and Described Probabilities constitutes the inference component (see Figure 3).

Figure 3: DE-Gap Composition

We then exploit exogenous variation to test econometrically whether it is statistical confidence that creates an inference component of DE-Gaps. Yoking outcome proportions in Experienced Samples to choice sets in the Described-Samples and Described-Probabilities treatments exogenously varies statistical confidence for these two latter treatments (Reference Rakow, Demes and NewellRakow et al., 2008; Reference Hau, Pleskac and HertwigHau et al., 2010; Reference Hertwig and PleskacHertwig & Pleskac, 2010). Our model thus estimates the probability of subject i in decision choice set j to choose as if underweighting i,j as a function of statistical confidence i,j, experimental treatment i, and their interaction, controlling for choiceset j, and with errors єi,j clustered at the subject level:

(1)

4.2 Experiment 1

Our experiments are computer-based, using the oTree framework (Reference Brown, Cai and DasGuptaChen et al., 2016). The first experiment enlisted bachelor and masters students at a European university. 214 students completed the experiment in 9 sessions (65% male, mean age = 20.4 years), a subject number that exceeds the DE-Gap study norm (Reference Erev, Ert, Plonsky, Cohen and CohenWulff et al., 2018). Each subject received 10 points as an initial endowment and additionally played out one randomly selected choice at the end of the experiment. This bonus ranged from −10 to 32 points and averaged 0.1. Compensation was through session-level sweepstakes of €50 conditional on the sum of endowed and additional points (Reference Tollock, Buchanan, Tollison and TullockTollock, 1980), which permits higher-powered incentivization than piece rates for everyone while guarding against the risk-preference skew of ranked winner-takes-all schemes (Reference Connelly, Tihanyi, Crook and GangloffConnelly et al., 2014; Reference Dechenaux, Kovenock and SheremetaDechenaux et al., 2015).

The experiment asked subjects to make ten choices between two money machines each (see Table 2). Each choice pair contains a risky money machine (i.e., one possible high outcome and one possible low outcome, with non-zero probabilities) and a safe money machine (i.e., one certain outcome). Subjects receive information on the possible outcomes of each money machine (for detail on the visual stimuli, see Appendix A).

The focal five choice sets are from canonical DE-Gap studies, three from Reference Hertwig, Barron, Weber and ErevHertwig et al. (2004), and two from Reference Barron and ErevBarron & Erev (2003). These five are the most frequently studied problems in the DE-Gap articles reviewed by Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018). They encompass positive and negative outcomes, small and large in magnitude, as well as expected-value-equivalent and non-equivalent pairs.

We complemented the classic sets with five additional filler choices, which are meant to reduce the chances of subjects approaching decision making with two types of informed priors. First, to avoid the impression that one of the two outcomes of a risky machine is always disproportionately rare, we included two choice sets with equal-probability outcomes (Choice Sets 6 and 7 in Table 2), one in the loss and one in the gain domain. Second, to avoid the impression that the two choices always offer similar payoffs in expectation, we included three choice sets where expected values differ substantially between the two money machines (Choice Sets 8-10 in Table 2). These three choice sets cover both gain and loss, as well as small and large outcomes. We randomized the display sequence of the ten choice sets as well as the left/right placement of the safe and risky machines.

The treatment Experienced Samples encompasses 49 subjects from the first 3 sessions. Subjects choose after sampling as often as they like. In all treatments, money-machine outcomes were stated explicitly — for instance, “4 points or 0 points”, ruling out sample-space unawareness (Reference Smithson, Bartos and TakemuraSmithson et al., 2000; Reference Hadar and FoxHadar & Fox, 2009). Sample draws were recorded on the screen to reduce the scope for memory-limitation confounds (e.g., Reference Hertwig, Barron, Weber and ErevHertwig et al., 2004; Reference Hau, Pleskac, Kiefer and HertwigHau et al., 2008; Reference Rakow, Demes and NewellRakow et al., 2008; Reference Ungemach, Chater and StewartUngemach et al., 2009).

The frequencies of random sample draws in the Experienced-Samples treatment provide the probabilities in the decision problems for subsequent treatments. Such yoking (Reference Rakow, Demes and NewellRakow et al., 2008; Reference Hau, Pleskac and HertwigHau et al., 2010; Reference Hertwig and PleskacHertwig & Pleskac, 2010) ensures that the proportions seen in the Experienced-Samples treatment are also those that subjects in other treatments see. Yoking rules out sampling error as a mechanical explanation for our DE-Gaps (e.g., Reference Fox and HadarFox & Hadar, 2006; Reference Hau, Pleskac, Kiefer and HertwigHau et al., 2008; Reference Ungemach, Chater and StewartUngemach et al., 2009; Reference Hau, Pleskac and HertwigHau et al., 2010) and avoids the side effects of other remedies.Footnote 7

Described Samples encompasses 81 subjects randomly allocated from the latter 6 sessions.Footnote 8 This treatment mirrors Experienced Samples, except that there is no independent sampling. Instead, subjects are shown the final sample records of their yoked counterparts.Footnote 9 Subjects are told that these randomly drawn samples were the record of previous plays at each machine (for detail on instructions, see Appendix A).

The difference between Described Samples and Experienced Samples is that subjects in the latter treatment experience the sampling process, whereas subjects in the former merely see the final sample records. Experiencing the sampling process involves drawing samples successively and, in our case, autonomously deciding when to stop sampling.

Our Described-Samples treatment is closest to Condition 3 in the DE-Gap study of Reference Rakow, Demes and NewellRakow et al. (2008) and the Yoked-Description condition in Reference Hertwig and PleskacHertwig & Pleskac (2010). Both provide subjects with sample summaries. Extending the robustness of these earlier efforts, we keep the visual display of samples constant between sample treatments. We also state the sample space and provide sample records. Together with yoking, these extensions rule out sampling error and amplification, sample-space unawareness, and sample-memory limitations as alternative explanations for the reported findings.

Also related, but with a different premise, is the study of Reference Smithson, Priest, Shou and NewellSmithson et al. (2019) who compared experienced and described samples but did not allow for random sampling. Nor did Reference Camilleri and NewellCamilleri & Newell (2019), who examined probability judgments and employed money machines that treated sample frequencies as population probabilities (unsuitable for studying choices in contexts where samples only partially reflect populations).

Described Probabilities encompasses 84 subjects randomly allocated from the latter 6 sessions. As in the classic treatment design (Reference Hertwig, Barron, Weber and ErevHertwig et al., 2004), subjects were shown yoked probabilities for the outcomes of each money machine — for instance, “4 points with probability 80% or 0 points with probability 20%”.

4.3 Experiment 2

We used Amazon Mechanical Turk (Reference Litman, Robinson and AbberbockLitman et al., 2017) for replication with a different subject pool and incentivization with piece rates. A total of 299 US-based Amazon Mechanical Turk workers were recruited as subjects (53% male, mean age = 36.8 years). Subjects were asked to make the same ten choices as in Experiment 1. Each subject received an Amazon worker fix-pay of $3 for their participation. In addition, each subject received an initial endowment of $1 for the experiment. As in Experiment 1, one choice set was randomly drawn to determine their additional bonus. All subjects were paid out. The average variable pay was $0.1, ranging from −$1 to $3.2.

Experiment 2 is based on the same design as Experiment 1. One hundred three subjects participated in the Experienced-Samples treatment. Afterward, we again yoked the experienced sample frequencies to the description treatments. Description treatments were run in parallel, randomly assigning 97 subjects to the Described-Probabilities treatment and 99 to the Described-Samples treatment.

4.4 Extant Data

To compare our work with that of prior studies, we retrieved the dataset used for a meta-analysis of DE-Gap research (Reference Erev, Ert, Plonsky, Cohen and CohenWulff et al., 2018). The dataset contains Described-Probabilities and Experienced-Samples treatments only. The data pertain to experiments that share many features of the canonical design such as the autonomous-sampling paradigm. Some designs differ from ours in that they do not display sample records to participants, state the outcome space, or yoke choice parameters across treatments. The Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018) dataset contains no information on the yoke pairings when yoking did take place.

5 Analyses

For both our and extant datasets, we restrict analyses to the focal choice sets 1-5 and to meaningful observations in which small probabilities can be underweighted (tests for robustness to exclusions are provided in Appendix D). To permit such underweighting, choices must first involve risk. If Experienced-Samples subjects choose before having drawn both possible outcomes from the risky machine, the yoked choice pair in Described Probabilities contains no risk, asking subjects to choose between two safe machines. These subjects cannot attach weights to probabilities for non-existent events. Free sampling necessarily creates such safe-only choices for almost all participants at least some of the time (Reference Erev, Ert, Plonsky, Cohen and CohenWulff et al., 2018). We exclude all safe-only choices and their yokes from the main analyses.

Underweighting of small probabilities also requires a minimum sample size so that a supposedly rare outcome is in fact rare. Very small sample sizes make drawing a supposedly rare event seem a common occurrence in sample treatments (Reference Hertwig, Pleskac, Chater and OaksfordHertwig & Pleskac, 2008, 2010) and are guaranteed to be a common occurrence in the yoked Described-Probability treatment. With a sample size of five or larger, supposedly rare events more likely occur in lower proportions. This restriction level is informed by the DE-Gap convention for rare, which is one in five or fewer (Reference Erev, Ert, Plonsky, Cohen and CohenWulff et al., 2018). After exclusions, our main analyses involve 507 Experiment-1 decisions, 529 Experiment-2 decisions, and 4,039 decisions observed in prior work.

5.1 The DE-Gap in Group-Mean Underweighting Choices

Our first finding is that the often-observed gap in probability weighting is partially due to the difference between receiving information through experience and description (the experience component), and partially due to the difference between inferring probabilities from samples and receiving stated probabilities (the inference component). We begin by showing these differences in the proportion of subjects choosing as if they underweight the probability of a rare event. As per Table 2, we code such choices as 1 if subjects

  1. 1. reject risky options with attractive rare outcomes, and

  2. 2. select risky options with unattractive rare outcomes (e.g., Hertwig et al., 2004; Reference Hertwig and ErevHertwig & Erev, 2009),

otherwise 0.

Figure 4 summarizes how a DE-Gap can contain a non-trivial inference component, in addition to an experience component (for detailed results, please see Figure C1 in Appendix C). The inference component constitutes 33% of the overall DE-Gap in our experiments. Figure 4 also compares our data to prior evidence with our choice sets 1-5. The overall DE-Gap magnitudes in our and extant data are comparable, offering an empirical suggestion that previously reported DE-Gaps may not exclusively identify experience effects.

Figure 4: DE-Gaps in the Treatment Proportions of Underweighting Choices

To inspect the robustness of comparisons between our and extant data, we randomly select 100 observations from each treatment and dataset, a thousand times (see Figure C2 in Appendix C for detail). The distribution of the 1000 DE-Gaps are closely aligned for both datasets. Comparability thus is not an accident and the systematic gap structure displayed in Figure 4 likely reliable.

Note that in our specification, the inference component is positive, but, as Section 3 illustrates, studies with different choice sets and sample patterns could generate a negative inference component too. So rather than making a claim about the general form of DE-Gaps’ inference component, we here merely show that non-negligible magnitudes of this component exist, potentially confounding experience effects in previously observed DE-Gaps.

Another way to interpret the choice data is to compare the underweighting likelihood of subjects in the Experienced-Samples treatment with that of subjects in the other treatments (see Table 3). The odds for Experienced-Sample subjects are significantly larger than those for Described-Probabilities subjects but not necessarily those for Described-Samples subjects. In our two experiments, the experience-only component of the overall DE-Gap difference in odds is small enough to be insignificant at a 95% level. We further probe these results with a parameter estimation in the following section.

Table 3: Relative Likelihood of Underweighting Choices

Notes. The table contains the odds for subjects in the Experienced-Samples treatment to choose as if they underweight small probabilities, relative to subjects in the indicated baseline treatments. 95% confidence intervals (CI) in brackets. Values pertain to the β1 parameter from logistic regressions of the form:

where i and j are decision and subject indices, respectively.

5.2 The DE-Gap in Estimated Probability-Weights

The preceding analyses of proportions and odds are straightforward but require researchers to categorize choices as underweighting. Alternatively, one can estimate probability weights on the basis of observed choice behavior. We thus follow established practice (Reference Abdellaoui, L’Haridon and ParaschivAbdellaoui et al., 2011; Reference Erev, Ert, Plonsky, Cohen and CohenWulff et al., 2018; Reference Hotaling, Jarvstad, Donkin and NewellHotaling et al., 2019) and complement our analyses with a decision parameter estimation that builds on cumulative prospect theory (CPT, Reference Ert and TrautmannTversky & Kahneman (1992).Footnote 10

Since CPT estimations require no particular problem structure for the identification of underweighting, we can include choice sets 6-10 as well, thus enhancing reliability in the mid range of probability. For extant data, we additionally include all classical choice sets where one risky outcome is zero. We retain our inclusion criteria of one risky outcome rare and sample size of five or greater, because relaxing them would

  1. 1. swamp the estimation with probabilities 0 and 1, and

  2. 2. increase the challenge of comparing unyoked treatments in extant data.

The CPT analyses reported here are, therefore, based on 2,178 Experiment 1 and 2 decisions, and 7,658 decisions from extant work. For transparency, the tables in Appendix D also document estimation parameters for Experiments 1 and 2 when all observations are included. Table 9 in Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018) reports the same for extant work.

Our focus is on the CPT parameter γ, which weights p, the described probability or frequency of sample outcomes (Reference Glöckner, Hilbig, Henninger and FiedlerGlöckner et al., 2016; Reference Lejarraga, Pachur, Frey and HertwigLejarraga et al., 2016). The weighting is determined by function w(p), as proposed by Reference Ert and TrautmannTversky & Kahneman (1992)Footnote 11:

(2)

For γ > 1, the weighting function is S-shaped and suggests underweighting of small probabilities (e.g., Reference Camerer and HoCamerer & Ho, 1994; Reference Gonzalez and WuGonzalez & Wu, 1999; Reference Fehr-Duda and EpperFehr-Duda & Epper, 2011). Conversely, γ < 1 indicates overweighting of small probabilities.

We summarize estimation results for γ in Figure 5 and Table 4 (see Appendix D for a complete list of estimates). In both our and extant data, participants in Described-Probabilities treatments overweight small probabilities, while those in Experienced-Samples treatments underweight. The γ estimates are in line with those reported elsewhere (e.g., Reference Ungemach, Chater and StewartUngemach et al., 2009; Reference Abdellaoui, L’Haridon and ParaschivAbdellaoui et al., 2011; Reference Camilleri and NewellCamilleri & Newell, 2011b; Reference Frey, Mata and HertwigFrey et al., 2015; Reference Glöckner, Hilbig, Henninger and FiedlerGlöckner et al., 2016; Reference Kellen, Pachur and HertwigKellen et al., 2016; Reference Lejarraga, Pachur, Frey and HertwigLejarraga et al., 2016). As per our expectation, the probability weights of participants in the Described-Samples treatments lie between those of their counterparts in the Described-Probabilities and Experienced-Samples treatments. This corroborates our earlier finding that overall DE-Gaps likely consist of both an inference and an experience component.

Figure 5: Probability Weighting. The graphs display the estimated probability weights w(p) of Equation (2) for each treatment. p is either the described probability or the frequency of sample outcomes.

Table 4: DE-Gaps in the Probability-Weighting Parameter γ

Notes. The table contains the median γ parameters estimated by the CPT model detailed in Appendix D and used in Figure 5. 95% confidence intervals in brackets.

5.3 The Effect of Statistical Confidence

When our decision problems in the Described-Probabilities treatment offer statistical confidence of 0 that the underweighting choice is superior to the alternative, decision problems in the sample treatments offer 0.18 on average. When the Described-Probability treatment offers statistical confidence of 1, the sample treatments offer 0.59 on average. Sample-treatment confidence levels thus depart from those in the Described-Probabilities treatment, rendering qualitatively different decision problems (see Figure 6) even when sampling error and amplification are absent.

Figure 6: Statistical-Confidence Distributions. The graphs display the estimated probability weights w(p) of Equation (2) for each treatment. p is either the described probability or the frequency of sample outcomes.

Our yoked design yields smaller departures than prior work does with choice sets 1-5 (extant data from Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al., 2018). Prior work’s sample treatments offer average confidence levels of 0.23 and 0.42, respectively. Unyoked settings are subject to sampling error and amplification that explain the larger differences in the values of statistical confidence across treatments in the extant data.

Underweighting behavior then systematically varies with statistical confidenceFootnote 12, as illustrated in Figure 7. Three observations emerge. First, the probability of a sample decision maker opting for the choice indicating underweighting of small probabilities increases with statistical confidence in the choice. This sensitivity is reassuringly consistent with those documented in studies of decision making under uncertainty (Reference Einhorn and HogarthEinhorn & Hogarth, 1985; Reference Gigliotti and SopherGigliotti & Sopher, 1996; Reference Ert and TrautmannErt & Trautmann, 2014; Reference Kutzner, Read, Stewart and BrownKutzner et al., 2017).

Figure 7: Statistical Confidence and Underweighting:

ES: Experienced Samples

DS: Described Samples

DP: Described Probabilities

Second, sample decision makers behave as if they underweight more (less) often than population decision makers when sample confidence markedly exceeds (falls short of) population confidence. If population confidence in the superiority of the underweighting choice is 0, for example, and sample confidence 0.3, then sample decision makers will choose as if they underweight more often than population decision makers.

Third, sample decision makers behave as if they underweight less (more) often than population decision makers when sample confidence barely exceeds (falls short of) population confidence. If population confidence in the superiority of the underweighting choice is 0, for example, and sample confidence 0.1, then sample decision makers will choose as if they underweight less often than population decision makers.

These three findings together demonstrate sensitivity to statistical confidence, especially for sample decisions. When sample confidence is less extreme than population confidence, sample decisions are less unequivocal. When sample confidence is almost as extreme as population confidence, sample decision makers’ choices are more resolute by comparison. Sample decision makers more often maximize payoffs as a result. These findings mean that the inference component of DE-Gaps could be positive as well as negative, depending on where average confidence values lie in sample treatments.Footnote 13

To provide a multivariate econometric test, we estimate a logistic model of as-if-underweighting choices (see Equation conffunction and Table 5). The model predicts individual decisions, addressing potential concerns about behavioral conclusions from group-level analysis (Reference Connelly, Tihanyi, Crook and GangloffRegenwetter & Robinson, 2017; Reference Hertwig and PleskacHertwig & Pleskac, 2018). For better interpretation, we additionally plot the marginal effects of statistical confidence in Figure 8.

Table 5: Logit Estimation of Underweighting

Notes. The table contains logistic-regression coefficients for subjects choosing the underweighting choice. Analysis is at the decision level, with errors clustered at the subject level. The baseline are decisions based on described probabilities.

Figure 8: Margin Plots. The graphs plot the marginal effects of the table models.

The Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018) dataset contains no Described-Samples treatment. The Described-Probabilities and Experienced/Samples treatments are also not yoked: described probabilities are fixed and do not correspond to sample proportions. The Described-Probabilities treatments in the Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018) data, therefore, always involve an underweighting choice and an alternative that are almost equivalent in expected value, whereas experience-treatment decisions involve choices with amplified expected-value differences (Reference Hertwig and PleskacHertwig & Pleskac, 2010). In our yoked experiment designs, by contrast, the difference in expected value between the two choices co-varies across treatments. The effect of confidence in our data can, therefore, be directly compared with the Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018) data for the Experienced-Samples treatment only.

The logistic models confirm trends visible in the raw data of Figure 7. The likelihood of choosing as if underweighting significantly increases with statistical confidence. With statistical confidence being accounted for in the logistic models of Table 5, the coefficients for the experimental-treatment dummies are of low significance. The interactions of statistical confidence and treatment dummies, by contrast, explain more variance. Treatment membership appears to alter the slope of the confidence effect. Decisions in Experienced Samples and Described Samples are more responsive to levels of statistical confidence than Described Probabilities. Sensitivity to statistical confidence in sample treatments compares (the 95% intervals in Figure 8 overlap), even though statistical confidence is exogenously determined in the Described-Samples treatment only, and partly endogenously determined in the Experienced-Samples treatment. The results for a confidence effect in sample treatments are consistent across our experiments as well as those reviewed by Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018). In prior work, reported DE-Gaps appear to stem from differences in statistical confidence across treatments.

In conclusion, our study shows that the DE-Gap reported in prior studies has an inference component. This inference component could be positive as well as negative. Risky decisions are sensitive to statistical confidence levels, irrespective of whether decision makers experienced sample draws or saw a description of them.

6 Discussion

In this paper, we offer a novel explanation for frequently observed description-experience gaps. Replicating the original gap in a yoked design, we show that part of the gap is due to the difference in the statistical properties of the decision problems in experimental treatments. Decisions based on samples are sensitive to statistical confidence. Underweighting behavior thus departs from that in decisions based on population probabilities (the inference component of DE-Gaps). When the same samples are described and when they are experienced, choice behavior remains distinct (the experience component of DE-Gaps).

6.1 The Inference Component of DE-Gaps

Our study shows that the weighting of small probabilities in risky choice based on sample information (such as provided by the typical experience treatment) differs from that in risky choice based on population information (such as provided by the typical description treatment). The difference is systematically related to the level of statistical confidence provided by the sample. This finding is consistent with studies of decision making under uncertainty (e.g., Reference Einhorn and HogarthEinhorn & Hogarth, 1985; Reference Kutzner, Read, Stewart and BrownKutzner et al., 2017) and provides an explanation for why prior studies found smaller DE-Gaps when experience and description treatments likely offered similar levels of statistical confidence. For example, smaller gaps were reported when experience decisions were based on forcibly large samples (Reference Jarvstad, Hahn, Rushton and WarrenJarvstad et al., 2013) and exhaustive samples (Reference Hilbig and GlöcknerHilbig & Glöckner, 2011; Reference Aydogan and GaoAydogan & Gao, 2020; Reference Cubitt, Kopsacheilis and StarmerCubitt et al., 2022). When samples are forcibly large or exhaustive, statistical confidence levels in sample and population decisions converge toward 0 or 1. In studies with smaller samples, statistical conditions are comparable only if description is also with samples.Footnote 14

Previously reported description-experience gaps thus likely contain an inference component, and variation in statistical confidence appears to explain it. Our identification is facilitated by the experimental design’s robustness to sampling error; we strictly yoke all our experimental treatments. We also rule out cognitive constraints by providing sample records and stating sample spaces. In the absence of statistical and cognitive confounds, we reveal how exogenously determined statistical confidence in sample decisions drives decision makers’ revealed preference for underweighting choices.

The econometric analysis confirms our expectation that sample decision makers show moderate underweighting behavior at intermediate values of statistical confidence — values that are offered by sample evidence only. Underweighting at intermediate values of confidence ranges between the underweighting observed for the two extreme values of 0 and 1 — values that are offered by fully specified probabilities only. Intriguingly, however, our findings also show that relative underweighting differences reverse in the vicinity of extreme statistical confidence. For example, decisions based on samples more often involve as-if-underweighting choices that are very likely superior in expectation, than decisions do that are based on population information offering surety. What at first may look like more underweighting actually is more reasonable choice behavior. It suggests that decisions based on samples from an unknown probability distribution more often follow those of a risk-neutral Bayesian than decisions based on descriptions of known probabilities.

Consistent with this finding, a recent study by Reference Camilleri and NewellCamilleri & Newell (2019) in the DE-Gap realm reports that probability judgments match outcome distributions more often when sample information is sequentially received than when it is summarily received. The authors ascribe the better calibration, in their case reduced over-precision, to learning through experience, rather than description. Their argument is that experiential learning makes for better recall of distributions than learning from description. Subjects learning from description expect more extreme outcomes than subjects learning from experience, arguably because description does not allow for the repeated prediction, prediction-error, and prediction-adjustment cycles of experience.

While this recall effect may explain why sensitivity to statistical confidence is somewhat larger for our Experienced-Samples subjects than for our Described-Samples subjects, it cannot explain why sample decisions are more sensitive to statistical confidence than population decisions. (Reference Camilleri and NewellCamilleri & Newell (2019) do not have a treatment on described probabilities for populations.) Descriptions of fully specified probabilities for a known outcome space preclude the existence of further or more frequent extreme outcomes and require no inference.

The inference gap between decisions based on sample and population information may stem from the more intuitive processing of natural frequencies (Reference Baillon, Bleichrodt, Keskin, L’Haridon and LiGigerenzer & Hoffrage, 1995). Although sample records require inference that fully specified probabilities do not, the exercise may lead people to make better decisions in expectation. Estimations based on sample evidence are noisy (Reference Olschewski, Newell, Oberholzer and ScheibehenneOlschewski et al., 2021), but the cognitive process alone might help people make more calibrated decisions. They might think through choice alternatives in a way that more naturally matches everyday cognitive demands than the way population statistics require. Reference Newell and RakowNewell & Rakow (2007) provide some indication of this: subjects made better decisions when sample outcomes were provided alongside fully-stated probabilities than when relying on the description only.

Decision makers seeing population statistics, on the other hand, appear to try to mentally simulate the distribution of outcomes described in population statistics (Reference Barron and YechiamErev et al., 2017; Reference Weiss-Cohen, Konstantinidis, Speekenbrink and HarveyWeiss-Cohen et al., 2018). They might not always be willing to undertake this cognitive effort and thus arrive at suboptimal choices than sample decision makers, who are naturally led to infer.

Future research on the cognitive role of statistical confidence may thus shed light on decision-making behavior ostensibly at odds with classic notions of revealed preferences. The formation of beliefs about underlying probabilities appears to explain behavior under uncertainty (Reference Ert and TrautmannErt & Trautmann, 2014; Reference Baillon, Bleichrodt, Keskin, L’Haridon and LiBaillon et al., 2017; Reference AydoganAydogan, 2021; Reference Cubitt, Kopsacheilis and StarmerCubitt et al., 2022), and our work points to subjective inferences being more consistent with statistical confidence in sample contexts.

6.2 The Experience Component of DE-Gaps

Our research design isolates the inference component from DE-Gaps and thus permits more direct examination of causes for the experience component. Our data contains perceptible differences in choice behavior between decisions based on experienced samples and those based on described samples.

Our finding complements Reference Rakow, Demes and NewellRakow et al. (2008), who report little difference in choice behavior between experienced and described samples. One take-away from both Reference Rakow, Demes and NewellRakow et al. (2008) and our stricter version is that comparing described and experienced samples permits examination of experience that is robust to confounding variation in information across treatments. It allows future research to be more precise about what it might mean for people to be “living through events” (Reference Hertwig, Hogarth and LejarragaHertwig et al., 2018, p.2) rather than just to read about them (see also Reference Hertwig and WulffHertwig & Wulff, 2020). To that end, our econometric analyses suggest experience has a moderating effect on sensitivity to statistical confidence.

Experience makes sampling cost salient, both economic, in terms of the time required for amassing evidence, and affective, in terms of the emotions of uncovering positive and negative evidence (Reference Konstantinidis, Taylor and NewellKonstantinidis et al., 2018). Being in control of sampling, including when (not) to stop, may additionally influence how comfortable decision makers feel with risky choices. These may be directions for future inquiry aided by the more precise identification of experience components that we contribute.

More obvious perhaps is that people who iteratively sample may be subject to primacy, order, and recency effects in a way that people receiving sample descriptions cannot be. Particular sample-draw patterns might influence beliefs more strongly than others, even when samples are recorded. Our experiments were not designed to identify such sequencing effects. But it is conceivable that the sequential revelation of sample evidence makes people repeatedly test and update their probability projections and, therefore, make better decisions than people who decide on the basis of a sample record (Reference HohwyHohwy, 2013; Reference Camilleri and NewellCamilleri & Newell, 2019). An extension to instance-based learning theory (Reference Camilleri and NewellGonzalez et al., 2003; Reference Lejarraga, Dutt and GonzalezLejarraga et al., 2012) might perhaps be able to account for such mechanisms, offering a means to examine description-experience gaps in decisions based on samples.

6.3 Implications for Decision Making

In contrast to popular experimental stimuli in decision science, people are rarely afforded fully specified probabilities when they make risky choices. No amount of experimentation or due diligence can offer fully specified probabilities of new-product failure and success, for example. Instead, people must rely on sample observations, provided by their own experience or through description of others’ experiences. So, when people choose between competing alternatives, their choice behavior more likely follows that observed in decisions based on samples than in decisions based on fully specified probabilities.

Our work reveals that the likely greater underweighting in organizational choice contexts need not be a bias. Experiencing sample evidence, such as the developer of a new product might (Reference Feiler and TongFeiler & Tong, 2021), may distort decisions through primacy, order, recency, or other sequencing effects. However, uninvolved decision-makers who merely see descriptions of sample evidence are not subject to such experience biases. Think executives who review record of a new-product development project, for example (Reference Klingebiel and RammerKlingebiel & Rammer, 2021). These decision makers’ underweighting behavior might then be an indication of statistical reasoning. Their debiasing might be further enhanced by ensuring appropriate priors (Reference Farmer, Warren and HahnFarmer et al., 2017) and stimulating inference through visualizations of probability distributions (Reference Kaufmann, Weber and HaisleyKaufmann et al., 2013; Reference Barron and ErevGoldstein & Rothschild, 2014). Our study thus opens up avenues for further research on improving real-world decision making.

7 Conclusion

Real-world decisions are often, but not always, based on experience, and virtually always based on limited sample evidence. Our work adds to the understanding of how each might contribute to frequently observed DE-Gaps. In particular, we show that sensitivity to statistical confidence leads to probability weighting in decisions based on samples that differ from decisions based on stated probabilities. Sample decision makers behave as if they underweight more than decision makers who need not infer probabilities. Yet, their choices more often maximize payoffs than the choices of those who receive fully specified probabilities. Real-world decision makers could turn out less biased than research based on fully described population probabilities might suggest.

Footnotes

1 The DE-Gap paradigm deems people to behave as if they underweight rare events when they either (a) opt for a safe choice and forego a risky-choice alternative with a small probability of a high outcome, as the manager could in the Figure 1 example, or (b) forego a safe choice and opt for a risky-choice alternative with a small probability of a low outcome (Reference Erev, Ert, Plonsky, Cohen and CohenWulff et al., 2018). Table 2 lists the choice problems used in this study. Section 2 details the DE-Gap paradigm.

2 A related body of work considering memory effects in decisions based on experience (without direct comparison with decisions based on description) finds that rare extreme events — if observed — may actually be encoded disproportionately frequently in memory. For detail, see Reference Madan, Ludvig and SpetchMadan et al. (2014), for example.

3 When choice sets involve two risky options instead of just one, the literature’s typical findings can reverse. For detail on such task dependence, see Reference Glöckner, Hilbig, Henninger and FiedlerGlöckner et al. (2016) and Reference Kellen, Pachur and HertwigKellen et al. (2016), for example. For a meta-analytic review of the effect of problem structure, see Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018).

4 Additional mechanism might create DE-Gaps in the repeated-decisions paradigm. In settings with feedback, decision makers not only learn about probability distributions underlying particular choice sets, but also about the efficacy of their choices across sets (Reference Ashby, Konstantinidis and YechiamAshby et al., 2017; Reference Barron and YechiamErev et al., 2017). Such settings are out of scope for our work.

5 For a recent discussion of how researchers may infer subjects’ beliefs about outcome probabilities, see Reference AydoganAydogan (2021).

7 Fixing the sample size constrains how decision markers actually go about learning from sampling (e.g., Reference Hau, Pleskac, Kiefer and HertwigHau et al., 2008, 2010). Pseudo-random sampling introduces autocorrelation (e.g., Reference Camilleri and NewellCamilleri & Newell, 2011a). See Reference Wulff, Mergenthaler-Canseco and HertwigWulff et al. (2018) for a discussion on ruling out sampling error.

8 Although sessions were meant to balance, the vagaries of scheduling experiments during a pandemic resulted in treatments with unequal participant numbers for Experiment 1. The results we report are robust to strict matching. Participant numbers in Experiment-2 treatments balance.

9 Yoking is by order of arrival to the experiment URL. The first participant in the Described-Samples treatment is yoked to the first participant in the Experienced-Samples treatment. The second to the second. And so on for 49 participants. The 50th participant in the Described-Samples treatment is again yoked to the first participant in the Experienced-Samples treatment, and so on. This yoking procedure accommodates treatments with unequal participant numbers.

10 Appendix D details the structure of the CPT model we apply. It reflects the mlcpt2out Stata model coded by Reference Glöckner, Hilbig, Henninger and FiedlerGlöckner et al. (2016). We estimate it with Stata’s Newton-Raphson algorithm for each treatment, clustering errors at the subject level (e.g., Reference HarrisonHarrison, 2008; Reference Einhorn and HogarthHarrison & Rutström, 2008; Reference Andersen, Harrison, Lau and RutströmAndersen et al., 2010; Reference Glöckner, Hilbig, Henninger and FiedlerGlöckner et al., 2016).

11 For robustness checks, we additionally estimate the Reference KarmarkarKarmarkar (1979) weighting function (see Appendix D). This sets elevation to 0.5 and thus deals with a common concern with single-parameter function (Reference Fehr-Duda and EpperFehr-Duda & Epper, 2011). See Reference Glöckner, Hilbig, Henninger and FiedlerGlöckner et al. (2016) for a discussion of alternative specifications for probability-weighting functions in the DE-Gap paradigm.

12 Note that our yoking procedure determines statistical confidence exogenously for the Described-Probabilities and Described-Samples treatments only. Participants in the Experienced-Samples treatment partially determine confidence through free sampling.

13 Appendix B illustrates the variation in mean confidence values across prior work. Experimenters determine confidence in sample treatments through their choice of problem sets and sample outcome-generation process. The sampling behavior of participants may cause a smaller level of additional variation.

14 One prior examination of the role of sample size (Reference Hau, Pleskac, Kiefer and HertwigHau et al., 2008) did not yoke and so is hard to interpret in the light of our findings. Nonetheless, their result that larger-sample decisions resemble population decisions more closely than smaller-sample decisions is consistent with the results we obtain.

References

Abdellaoui, M., L’Haridon, O., & Paraschiv, C. (2011). Experienced vs. described uncertainty: Do we need two prospect theory specifications? Management Science, 57(10), 18791895.CrossRefGoogle Scholar
Andersen, S., Harrison, G. W., Lau, M. I., & Rutström, E. E. (2010). Behavioral econometrics for psychologists. Journal of Economic Psychology, 31(4), 553576.CrossRefGoogle Scholar
Ashby, N. J., Konstantinidis, E., & Yechiam, E. (2017). Choice in experiential learning: True preferences or experimental artifacts? Acta Psychologica, 174, 5967.CrossRefGoogle ScholarPubMed
Aydogan, I. (2021). Prior beliefs and ambiguity attitudes in decision from experience. Management Science, 67(11), 69346945.CrossRefGoogle Scholar
Aydogan, I. & Gao, Y. (2020). Experience and rationality under risk: Re-examining the impact of sampling experience. Experimental Economics, 23, 11001128.CrossRefGoogle ScholarPubMed
Baillon, A., Bleichrodt, H., Keskin, U., L’Haridon, O., & Li, C. (2017). The effect of learning on ambiguity attitudes. Management Science, 64(5), 21812198.CrossRefGoogle Scholar
Barron, G. & Erev, I. (2003). Small feedback-based decisions and their limited correspondence to description-based decisions. Journal of Behavioral Decision Making, 16(3), 215233.CrossRefGoogle Scholar
Barron, G. & Yechiam, E. (2009). The coexistence of overestimation and underweighting of rare events and the contingent recency effect. Judgment and Decision Making, 4(6), 447460.CrossRefGoogle Scholar
Bayes, T., Price, R., & Canton, J. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370418.Google Scholar
Bazerman, M. H. & Moore, D. A. (2013). Judgment in Managerial Decision Making. Hoboken, New Jersey: John Wiley & Sons.Google Scholar
Bernardo, J. M. & Smith, A. F. M. (1994). Bayesian Theory. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
Bolstad, W. M. & Curran, J. M. (2016). Introduction to Bayesian Statistics. Hoboken, New Jersey: John Wiley & Sons.Google Scholar
Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16(2), 101133.CrossRefGoogle Scholar
Camerer, C. F. & Ho, T. H. (1994). Violations of the betweenness axiom and nonlinearity in probability. Journal of Risk and Uncertainty, 8(2), 167196.CrossRefGoogle Scholar
Camilleri, A. R. & Newell, B. R. (2011a). Description- and experience-based choice: Does equivalent information equal equivalent choice? Acta Psychologica, 136(3), 276284.CrossRefGoogle ScholarPubMed
Camilleri, A. R. & Newell, B. R. (2011b). When and why rare events are underweighted: A direct comparison of the sampling, partial feedback, full feedback and description choice paradigms. Psychonomic Bulletin & Review, 18(2), 377384.CrossRefGoogle ScholarPubMed
Camilleri, A. R. & Newell, B. R. (2019). Better calibration when predicting from experience (rather than description). Organizational Behavior and Human Decision Processes, 150, 6282.CrossRefGoogle Scholar
Chen, D. L., Schonger, M., & Wickens, C. (2016). oTree – An open-source platform for laboratory, online, and field experiments. Journal of Behavioral and Experimental Finance, 9(2), 8897.CrossRefGoogle Scholar
Connelly, B. L., Tihanyi, L., Crook, T. R., & Gangloff, K. A. (2014). Tournament theory: Thirty years of contests and competitions. Journal of Management, 40(1), 1647.CrossRefGoogle Scholar
Cubitt, R. P., Kopsacheilis, O., & Starmer, C. (2022). An inquiry into the nature and causes of the Description-Experience gap. Journal of Risk and Uncertainty. Forthcoming.CrossRefGoogle Scholar
de Palma, A., et al. (2014). Beware of black swans: Taking stock of the description–experience gap in decision under uncertainty. Marketing Letters, 25(3), 269280.CrossRefGoogle Scholar
Dechenaux, E., Kovenock, D., & Sheremeta, R. M. (2015). A survey of experimental research on contests, all-pay auctions and tournaments. Experimental Economics, 18(4), 609669.CrossRefGoogle Scholar
Einhorn, H. J. & Hogarth, R. M. (1985). Ambiguity and uncertainty in probabilistic inference. Psychological Review, 92(4), 433461.CrossRefGoogle Scholar
Erev, I., Ert, E., Plonsky, O., Cohen, D., & Cohen, O. (2017). From anomalies to forecasts: Toward a descriptive model of decisions under risk, under ambiguity, and from experience. Psychological Review, 124(4), 369409.CrossRefGoogle Scholar
Erev, I., Glozman, I., & Hertwig, R. (2008). What impacts the impact of rare events. Journal of Risk and Uncertainty, 36(2), 153177.CrossRefGoogle Scholar
Ert, E. & Trautmann, S. T. (2014). Sampling experience reverses preferences for ambiguity. Journal of Risk and Uncertainty, 49(1), 3142.CrossRefGoogle Scholar
Farmer, G. D., Warren, P. A., & Hahn, U. (2017). Who “believes” in the Gambler’s Fallacy and why? Journal of Experimental Psychology: General, 146(1), 6376.CrossRefGoogle ScholarPubMed
Fehr-Duda, H. & Epper, T. (2011). Probability and risk: Foundations and economic implications of probability-dependent risk preferences. Annual Review of Economics, 4, 567593.CrossRefGoogle Scholar
Feiler, D. & Tong, J. (2021). From Noise to Bias: Overconfidence in New Product Forecasting. Management Science. Advance online publication. Available at https://doi.org/10.1287/mnsc.2021.4102.CrossRefGoogle Scholar
Fox, C. R. & Hadar, L. (2006). Decisions from experience = sampling error + prospect theory: Reconsidering Hertwig, Barron, Weber & Erev (2004). Judgment and Decision Making, 1(2), 159161.CrossRefGoogle Scholar
Frey, R., Mata, R., & Hertwig, R. (2015). The role of cognitive abilities in decisions from experience: Age differences emerge as a function of choice set size. Cognition, 142, 6080.CrossRefGoogle ScholarPubMed
Gigerenzer, G. & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102(4), 684704.CrossRefGoogle Scholar
Gigliotti, G. & Sopher, B. (1996). The testing principle: Inductive reasoning and the Ellsberg paradox. Thinking & Reasoning, 2(1), 3349.CrossRefGoogle Scholar
Glöckner, A., Hilbig, B. E., Henninger, F., & Fiedler, S. (2016). The reversed description-experience gap: Disentangling sources of presentation format effects in risky choice. Journal of Experimental Psychology: General, 145(4), 486508.CrossRefGoogle ScholarPubMed
Goldstein, D. G. & Rothschild, D. (2014). Lay understanding of probability distributions. Judgment and Decision Making, 9(1), 114.CrossRefGoogle Scholar
Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-based learning in dynamic decision making. Cognitive Science, 27(4), 591635.CrossRefGoogle Scholar
Gonzalez, R. & Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology, 38(1), 129166.CrossRefGoogle ScholarPubMed
Gottlieb, D. A., Weiss, T., & Chapman, G. B. (2007). The format in which uncertainty information is presented affects decision biases. Psychological Science, 18(3), 240246.CrossRefGoogle ScholarPubMed
Griffin, D. & Tversky, A. (1992). The weighing of evidence and the determinants of confidence. Cognitive Psychology, 24(3), 411435.CrossRefGoogle Scholar
Hadar, L. & Fox, C. R. (2009). Information asymmetry in decision from description versus decision from experience. Judgment and Decision Making, 4(4), 317325.CrossRefGoogle Scholar
Harrison, G. W. (2008). Maximum likelihood estimation of utility functions using Stata. Working paper, University of Central Florida.Google Scholar
Harrison, G. W. & Rutström, E. E. (2008). Risk aversion in the laboratory. In Cox, J. & Harrison, G. W. (Eds.), Risk Aversion in Experiments (Research in Experimental Economics, Vol. 12) (pp. 41196). Bingley: Emerald Group Publishing Limited.Google Scholar
Hau, R., Pleskac, T. J., & Hertwig, R. (2010). Decisions from experience and statistical probabilities: Why they trigger different choices than a priori probabilities. Journal of Behavioral Decision Making, 23(1), 4868.CrossRefGoogle Scholar
Hau, R., Pleskac, T. J., Kiefer, J., & Hertwig, R. (2008). The description–experience gap in risky choice: The role of sample size and experienced probabilities. Journal of Behavioral Decision Making, 21(5), 493518.CrossRefGoogle Scholar
He, Z. & Dai, J. (2022). Context-dependent outcome expectation contributes to experience-based risky choice. Judgment & Decision Making, 17(1).CrossRefGoogle Scholar
Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15(8), 534539.CrossRefGoogle ScholarPubMed
Hertwig, R. & Erev, I. (2009). The description–experience gap in risky choice. Trends in Cognitive Sciences, 13(12), 517523.CrossRefGoogle ScholarPubMed
Hertwig, R., Hogarth, R. M., & Lejarraga, T. (2018). Experience and description: Exploring two paths to knowledge. Current Directions in Psychological Science, 27(2), 123128.CrossRefGoogle Scholar
Hertwig, R. & Pleskac, T. J. (2008). The game of life: How small samples render choice simpler. In Chater, N. & Oaksford, M. (Eds.), The Probabilistic Mind: Prospects for Bayesian Cognitive Science (pp. 209235). Oxford: Oxford University Press.CrossRefGoogle Scholar
Hertwig, R. & Pleskac, T. J. (2010). Decisions from experience: Why small samples? Cognition, 115(2), 225237.CrossRefGoogle ScholarPubMed
Hertwig, R. & Pleskac, T. J. (2018). The construct–behavior gap and the description–experience gap: Comment on Regenwetter and Robinson (2017). Psychological Review, 125(5), 844849.CrossRefGoogle ScholarPubMed
Hertwig, R. & Wulff, D. U. (2020). A description–experience framework of the dynamic response to risk. https://doi.org/10.31234/osf.io/qrph5.CrossRefGoogle Scholar
Hilbig, B. E. & Glöckner, A. (2011). Yes, they can! Appropriate weighting of small probabilities as a function of information acquisition. Acta Psychologica, 138(3), 390396.CrossRefGoogle ScholarPubMed
Hill, B. M. (1968). Posterior distribution of percentiles: Bayes’ theorem for sampling from a population. Journal of the American Statistical Association, 63(322), 677691.Google Scholar
Hogarth, R. M. & Einhorn, H. J. (1992). Order effects in belief updating: The belief-adjustment model. Cognitive Psychology, 24(1), 155.CrossRefGoogle Scholar
Hohwy, J. (2013). The Predictive Mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hotaling, J. M., Jarvstad, A., Donkin, C., & Newell, B. R. (2019). How to change the weight of rare events in decisions from experience. Psychological Science, 30(12), 17671779.CrossRefGoogle ScholarPubMed
Jarvstad, A., Hahn, U., Rushton, S. K., & Warren, P. A. (2013). Perceptuo-motor, cognitive, and description-based decision-making seem equally good. Proceedings of the National Academy of Sciences of the United States of America, 110(40), 1627116276.CrossRefGoogle ScholarPubMed
Jessup, R. K., Bishara, A. J., & Busemeyer, J. R. (2008). Feedback produces divergence from prospect theory in descriptive choice. Psychological Science, 19(10), 10151022.CrossRefGoogle ScholarPubMed
Kahneman, D. & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263291.CrossRefGoogle Scholar
Karmarkar, U. S. (1979). Subjectively weighted utility and the Allais paradox. Organizational Behavior and Human Performance, 24(1), 6772.CrossRefGoogle Scholar
Kaufmann, C., Weber, M., & Haisley, E. (2013). The role of experience sampling and graphical displays on one’s investment risk appetite. Management Science, 59(2), 323340.CrossRefGoogle Scholar
Kellen, D., Pachur, T., & Hertwig, R. (2016). How (in)variant are subjective representations of described and experienced risk and rewards? Cognition, 157, 126138.CrossRefGoogle ScholarPubMed
Klingebiel, R. & Rammer, C. (2021). Optionality and selectiveness in innovation. Academy of Management Discoveries, 7(3), 328342.CrossRefGoogle Scholar
Konstantinidis, E., Taylor, R. T., & Newell, B. R. (2018). Magnitude and incentives: Revisiting the overweighting of extreme events in risky decisions from experience. Psychonomic Bulletin & Review, 25, 19251933.CrossRefGoogle ScholarPubMed
Kopsacheilis, O. (2018). The role of information search and its influence on risk preferences. Theory and Decision, 84(3), 311339.CrossRefGoogle ScholarPubMed
Kutzner, F. L., Read, D., Stewart, N., & Brown, G. (2017). Choosing the devil you don’t know: Evidence for limited sensitivity to sample size-based uncertainty when it offers an advantage. Management Science, 63(5), 15191528.CrossRefGoogle Scholar
Laplace, P. S. (1986). Memoir on the probability of the causes of events. Statistical Science, 1(3), 364378.CrossRefGoogle Scholar
Lejarraga, T., Dutt, V., & Gonzalez, C. (2012). Instance-based learning: A general model of repeated binary choice. Journal of Behavioral Decision Making, 25(2), 143153.CrossRefGoogle Scholar
Lejarraga, T. & Lejarraga, J. (2020). Confidence and the description–experience distinction. Organizational Behavior and Human Decision Processes, 161, 201212.CrossRefGoogle Scholar
Lejarraga, T., Pachur, T., Frey, R., & Hertwig, R. (2016). Decisions from experience: From monetary to medical gambles. Journal of Behavioral Decision Making, 29(1), 6777.CrossRefGoogle Scholar
Litman, L., Robinson, J., & Abberbock, T. (2017). TurkPrime.com: A versatile crowdsourcing data acquisition platform for the behavioral sciences. Behavior Research Methods, 49(2), 433442.CrossRefGoogle ScholarPubMed
Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis. New York: John Wiley & Sons.Google Scholar
Madan, C. R., Ludvig, E. A., & Spetch, M. L. (2014). Remembering the best and worst of times: Memories for extreme outcomes bias risky decisions. Psychonomic Bulletin & Review, 21(3), 629636.CrossRefGoogle ScholarPubMed
Newell, B. R. & Rakow, T. (2007). The role of experience in decisions from description. Psychonomic Bulletin & Review, 14(6), 11331139.CrossRefGoogle ScholarPubMed
Nilsson, H., Rieskamp, J., & Wagenmakers, E.-J. (2011). Hierarchical Bayesian parameter estimation for cumulative prospect theory. Journal of Mathematical Psychology, 55(1), 8493.CrossRefGoogle Scholar
Olschewski, S., Newell, B. R., Oberholzer, Y., & Scheibehenne, B. (2021). Valuation and estimation from experience. Journal of Behavioral Decision Making. Advance online publication. Available at https://doi.org/10.1002/bdm.2241.CrossRefGoogle Scholar
Ostwald, D., Starke, L., & Hertwig, R. (2015). A normative inference approach for optimal sample sizes in decisions from experience. Frontiers in Psychology, 6.CrossRefGoogle ScholarPubMed
Pires, A. M. & Amado, C. (2008). Interval estimators for a binomial proportion: Comparison of twenty methods. REVSTAT – Statistical Journal, 6(2), 165197.Google Scholar
Rakow, T., Demes, K. A., & Newell, B. R. (2008). Biased samples not mode of presentation: Re-examining the apparent underweighting of rare events in experience-based choice. Organizational Behavior and Human Decision Processes, 106, 168179.CrossRefGoogle Scholar
Rakow, T., Newell, B. R., & Zougkou, K. (2010). The role of working memory in information acquisition and decision making: Lessons from the binary prediction task. Quarterly Journal of Experimental Psychology, 63(7), 13351360.CrossRefGoogle ScholarPubMed
Rakow, T. & Rahim, S. B. (2010). Developmental insights into experience-based decision making. Journal of Behavioral Decision Making, 23(1), 6982.CrossRefGoogle Scholar
Regenwetter, M. & Robinson, M. M. (2017). The construct–behavior gap in behavioral decision research: A challenge beyond replicability. Psychological Review, 124(5), 533550.CrossRefGoogle ScholarPubMed
Smithson, M., Bartos, T., & Takemura, K. (2000). Human judgment under sample space ignorance. Risk, Decision and Policy, 5(2), 135150.CrossRefGoogle Scholar
Smithson, M., Priest, D., Shou, Y., & Newell, B. R. (2019). Ambiguity and conflict aversion when uncertainty is in the outcomes. Frontiers in Psychology, 10.CrossRefGoogle ScholarPubMed
Stewart, N., Chater, N., & Brown, G. (2006). Decision by sampling. Cognitive Psychology, 53(1), 126.CrossRefGoogle ScholarPubMed
Tollock, G. (1980). Efficient rent-seeking. In Buchanan, J. M., Tollison, R. D., & Tullock, G. (Eds.), Toward a Theory of the Rent-Seeking Society (pp. 97112). College Station: Texas A&M University Press.Google Scholar
Tversky, A. & Kahneman, D. (1971). Belief in the law of small numbers. Psychological Bulletin, 76(2), 105.CrossRefGoogle Scholar
Tversky, A. & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297323.CrossRefGoogle Scholar
Ungemach, C., Chater, N., & Stewart, N. (2009). Are probabilities overweighted or underweighted when rare outcomes are experienced (rarely)? Psychological Science, 20(4), 473479.CrossRefGoogle ScholarPubMed
Weber, E. U., Shafir, S., & Blais, A.-R. (2004). Predicting risk sensitivity in humans and lower animals: Risk as variance or coefficient of variation. Psychological Review, 111(2), 430445.CrossRefGoogle ScholarPubMed
Weiss-Cohen, L., Konstantinidis, E., Speekenbrink, M., & Harvey, N. (2018). Task complexity moderates the influence of descriptions in decisions from experience. Cognition, 170, 209227.CrossRefGoogle ScholarPubMed
Wulff, D. U., Mergenthaler-Canseco, M., & Hertwig, R. (2018). A meta-analytic review of two modes of learning and the description-experience gap. Psychological Bulletin, 144(2), 140176.CrossRefGoogle ScholarPubMed
Figure 0

Figure 1: Canonical choice-set format. Opting for the safe choice would underweight the small probability of success in the risky choice.

Figure 1

Table 1: Statistical Confidence in Experimental Treatments

Figure 2

Table 2: Choice Sets

Figure 3

Figure 2: Statistical Confidence for the Opening Example of New-Product ChoiceValue labels indicate statistical confidence p(EVUWEVAlt) in a sample treatment. Marker symbols indicate the corresponding statistical confidence — either — in a description treatment with probabilities yoked to sample proportions.

Figure 4

Figure 3: DE-Gap Composition

Figure 5

Figure 4: DE-Gaps in the Treatment Proportions of Underweighting Choices

Figure 6

Table 3: Relative Likelihood of Underweighting Choices

Figure 7

Figure 5: Probability Weighting. The graphs display the estimated probability weights w(p) of Equation (2) for each treatment. p is either the described probability or the frequency of sample outcomes.

Figure 8

Table 4: DE-Gaps in the Probability-Weighting Parameter γ

Figure 9

Figure 6: Statistical-Confidence Distributions. The graphs display the estimated probability weights w(p) of Equation (2) for each treatment. p is either the described probability or the frequency of sample outcomes.

Figure 10

Figure 7: Statistical Confidence and Underweighting:ES: Experienced SamplesDS: Described SamplesDP: Described Probabilities

Figure 11

Table 5: Logit Estimation of Underweighting

Figure 12

Figure 8: Margin Plots. The graphs plot the marginal effects of the table models.The Wulff et al. (2018) dataset contains no Described-Samples treatment. The Described-Probabilities and Experienced/Samples treatments are also not yoked: described probabilities are fixed and do not correspond to sample proportions. The Described-Probabilities treatments in the Wulff et al. (2018) data, therefore, always involve an underweighting choice and an alternative that are almost equivalent in expected value, whereas experience-treatment decisions involve choices with amplified expected-value differences (Hertwig & Pleskac, 2010). In our yoked experiment designs, by contrast, the difference in expected value between the two choices co-varies across treatments. The effect of confidence in our data can, therefore, be directly compared with the Wulff et al. (2018) data for the Experienced-Samples treatment only.

Supplementary material: File

Klingebiel and Zhu supplementary material
Download undefined(File)
File 956.5 KB
Supplementary material: File

Klingebiel and Zhu supplementary material
Download undefined(File)
File 237.7 KB