1 Introduction
In order to understand how decision making has evolved, it is crucial to understand what are the optimal policies (i.e., algorithms, behaviours) for decision making under different scenarios (Reference MarshallMarshall, 2019, Reference Pirrone, Stafford and MarshallPirrone et al., 2014, Reference Bogacz, Brown, Moehlis, Holmes and CohenBogacz et al., 2006). A common working hypothesis is that decision-making systems have evolved to approximate, through robust policies, optimal strategies for cost minimisation and reward maximisation across tasks and domains given the centrality of these factors for survival and reproduction (Reference Pirrone, Stafford and MarshallPirrone et al., 2014, Reference Tajima, Drugowitsch and PougetTajima et al., 2016, Reference MarshallMarshall, 2019, Reference Bogacz, Brown, Moehlis, Holmes and CohenBogacz et al., 2006).
Extensive work (Reference Bogacz, Brown, Moehlis, Holmes and CohenBogacz et al., 2006) has addressed the question of optimality with regard to accuracy-based choices — that is, choices for which there is a correct response. For decisions with two alternatives, and under specific constrains (for details see Reference Bogacz, Brown, Moehlis, Holmes and CohenBogacz et al., 2006, Reference MoranMoran, 2015), such choices are optimised by the well-known drift diffusion model in which agents integrate difference in evidence until a decision threshold for one of two alternatives is reached (Reference Ratcliff and McKoonRatcliffMcKoon, 2008, Reference Ratcliff, Smith, Brown and McKoonRatcliff et al., 2016).
Seminal work from (Reference Tajima, Drugowitsch and PougetTajima et al., 2016) has focused instead on deriving the optimal policy for value-based choices. With value-based choices, participants are rewarded by the value of the chosen alternative, regardless of whether it is the best option available. The classical example for this type of choices is that of food choices — compared to accuracy-based scenarios, for food choices there is no ‘accurate’ choice. It is particularly important to study value-based choices because most naturalistic decisions are value-based (Reference Pirrone, Stafford and MarshallPirrone et al., 2014). Even so-called ‘perceptual decisions’ are made in order to maximise reward or minimise loss such as, for example, avoiding an obstacle or detecting a prey.
Surprisingly, the optimal policy for value-based choices derived in (Reference Tajima, Drugowitsch and PougetTajima et al., 2016) shows striking similarities to the optimal choice for accuracy-based choices (Reference Bogacz, Brown, Moehlis, Holmes and CohenBogacz et al., 2006, Reference Tajima, Drugowitsch and PougetTajima et al., 2016). Under specific task assumptions — such as linear utility, linear cost of time and constant processing noise — the optimal policy is implemented by a diffusion process in which parallel decision thresholds collapse over time as a function of prior knowledge about average reward across trials (Reference Tajima, Drugowitsch and PougetTajima et al., 2016). This mechanism ensures maximisation of the expected reward by having boundaries in highly rewarding environments collapsing faster than in low rewarding environments. ‘Parallel collapsing boundaries’ (see Figure 1 for an example) affect the amount of difference between alternatives that is needed to trigger a decision (Reference Hawkins, Forstmann, Wagenmakers, Ratcliff and BrownHawkins et al., 2015). In particular, the difference between alternatives that would trigger a decision decreases with time, so that less evidence that one alternative is superior to the other is needed to make a decision at late stages of evidence accumulation.
As discussed in detail in (Reference MarshallMarshall, 2019), (Reference Pirrone, Wen and LiPirrone et al., 2018b) and (Reference Steverson, Chung, Zimmermann, Louie and GlimcherSteverson et al., 2019), one feature that characterises the optimal policy with linear subjective utility proposed by (Reference Tajima, Drugowitsch and PougetTajima et al., 2016) is that single trial dynamics are magnitude-insensitive. The reason for this is straightforward: a purely relative decision process, in which difference between alternatives is integrated, cannot discriminate between conditions of different magnitude but with the same difference — even with the addition of parallel collapsing boundaries. This rationale is exemplified by the equal alternative case: an alternative pair of 2 vs 2 (low value) and an alternative pair of 8 vs 8 (high value) have both the same difference (null) and are indistinguishable for a purely relative model that processes only difference between alternatives. Even with collapsing boundaries, decisions among equal alternatives would, on average, be made in the same time.
Magnitude-sensitivity (Reference Pirrone, Stafford and MarshallPirrone et al., 2014) refers to a value-maximising strategy in which small differences in accuracy between high-valued alternatives are disregarded in favour of a quick choice. This strategy has been deemed evolutionary advantageous in order to maximise speed-value trade-offs that characterise value-based decisions (Reference Pirrone, Stafford and MarshallPirrone et al., 2014, Reference Pirrone, Azab, Hayden, Stafford and MarshallPirrone et al., 2018a).
Magnitude-sensitivity — faster choices as the magnitude of the alternatives increases — has been observed empirically in a number of studies and for different organisms, from unicellular organisms making food choices to humans and non-human primates involved in economic decision-making (Reference Pais, Hogan, Schlegel, Franks, Leonard and MarshallPais et al., 2013, Reference Pirrone, Azab, Hayden, Stafford and MarshallPirrone et al., 2018a, Reference Pirrone, Wen and LiPirrone et al., 2018b, Reference Bose, Reina and MarshallBose et al., 2017, Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Reina, Marshall, Trianni and BoseReina et al., 2017, Reference Ratcliff, Voskuilen and TeodorescuRatcliff et al., 2018, Reference Dussutour, Ma and SumpterDussutour et al., 2019, Reference Steverson, Chung, Zimmermann, Louie and GlimcherSteverson et al., 2019, Reference Hunt, Kolling, Soltani, Woolrich, Rushworth and BehrensHunt et al., 2012, Reference Kvam and PleskacKvamPleskac, 2016, Reference Smith and KrajbichSmithKrajbich, 2019, Reference Marshall, Reina and PirroneMarshall et al., 2021). Magnitude-sensitivity has been observed even in the limit case of equal alternatives; compared to low but equally valued alternatives, agents show faster reaction times for high but equally valued alternatives (Reference Pirrone, Azab, Hayden, Stafford and MarshallPirrone et al., 2018a, Reference Pirrone, Wen and LiPirrone et al., 2018b). For example, in choosing between rewards, monkeys are faster in choosing between two equally high rewards than two equally poor rewards (Reference Pirrone, Azab, Hayden, Stafford and MarshallPirrone et al., 2018a). Similarly, humans show faster reaction times as the value of equal alternatives increases in a typical value-based experiment in which participants have to choose between images of food that they had previously rated (Reference Smith and KrajbichSmithKrajbich, 2019). Surprisingly, even unicellular organisms exhibit magnitude-sensitivity, being faster in reaching one of two equally-high than one of two equally-low valued food sources (Reference Dussutour, Ma and SumpterDussutour et al., 2019).
(Reference Tajima, Drugowitsch and PougetTajima et al., 2016) have shown that if the assumption of linear subjective utility is relaxed in favour of non-linear subjective utility, the optimal policy for value-based decisions is implemented by non-parallel collapsing decision boundaries. In this case, choices for high-magnitude equal alternatives are made faster compared to choices for low-magnitude equal alternatives; that is, non-linear subjective utility can give rise to magnitude-sensitivity. However, given the widely documented result of magnitude-sensitivity, and the theoretical arguments supporting why it is expected for optimal decision-making, Tajima et al.’s (Reference Tajima, Drugowitsch and Pouget) model has been modified in order to account for magnitude-sensitivity in the linear utility case. One line of research has questioned Tajima et al.’s (Reference Tajima, Drugowitsch and Pouget) assumption of linear cost of time in favour of an ecologically plausible non-linear cost of time of future rewards (Reference Steverson, Chung, Zimmermann, Louie and GlimcherSteverson et al., 2019, Reference MarshallMarshall, 2019, Reference Marshall, Reina and PirroneMarshall et al., 2021); in this case, magnitude-sensitivity is observed even with linear utility functions. However, it remains to be understood if and how a non-linear cost of time could explain magnitude-sensitivity in tasks in which reward is either fixed, non-delayed or even absent (Reference Pirrone, Azab, Hayden, Stafford and MarshallPirrone et al., 2018a, Reference Pirrone, Wen and LiPirrone et al., 2018b, Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Smith and KrajbichSmithKrajbich, 2019, Reference Ratcliff, Voskuilen and TeodorescuRatcliff et al., 2018).
Here, building on previous strong empirical and theoretical evidence (Reference Brunton, Botvinick and BrodyBrunton et al., 2013, Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Ratcliff, Voskuilen and TeodorescuRatcliff et al., 2018, Reference Lu and DosherLuDosher, 2008, Reference Louie, Khaw and GlimcherLouie et al., 2013, Reference GeislerGeisler, 1989), we investigate whether magnitude-sensitive noise in the accumulation of evidence could give rise to magnitude-sensitive optimal decision-making. In other words, we question the assumption of constant processing noise made by (Reference Tajima, Drugowitsch and PougetTajima et al., 2016).
Extensive work supports the hypothesis that input-dependent noise is neurally-plausible (Reference Albrecht and GeislerAlbrechtGeisler, 1991, Reference Albrecht and HamiltonAlbrechtHamilton, 1982, Reference BondsBonds, 1991, Reference Derrington and LennieDerringtonLennie, 1984, Reference HeegerHeeger, 1993, Reference Kaplan and ShapleyKaplanShapley, 1982, Reference Ohzawa, Sclar and FreemanOhzawa et al., 1982, Reference Sclar, Maunsell and LennieSclar et al., 1990), and there is evidence that during evidence accumulation in both humans and rats, input-dependent noise plays a dominant role, while constant processing noise is null (Reference Brunton, Botvinick and BrodyBrunton et al., 2013). Hence, we want to stress that input-dependent noise is not just a technical ad-hoc assumption made in order to accommodate magnitude-sensitivity, but it is instead a principled account of evidence accumulation that warrants further investigation. Here, we report theoretical evidence that input-dependent noise is one of the key candidate explanations for magnitude-sensitivity, as previously suggested by (Reference Teodorescu, Moran and UsherTeodorescu et al., 2016), (Reference Ratcliff, Voskuilen and TeodorescuRatcliff et al., 2018) and (Reference Bose, Pirrone, Reina and MarshallBose et al., 2020). Our approach is in contrast with how noise is parametrised in computational models of choice (Reference Ratcliff and McKoonRatcliffMcKoon, 2008, Reference Usher and McClellandUsherMcClelland, 2001, Reference Bogacz, Brown, Moehlis, Holmes and CohenBogacz et al., 2006, Reference Brown and HeathcoteBrownHeathcote, 2008), where input-dependent noise is absent and only constant processing noise affects the decision-making process. Our approach is instead in line with influential work by (Reference Lu and DosherLuDosher, 2008), who have shown that including input-dependent noise in models of human perception is necessary in order to satisfactorily explain empirical data. Including input-dependent noise in the accumulation of evidence does not necessarily predict that the optimal policy should be magnitude-sensitive; this needs to be investigated with mathematical simulations and cannot be claimed a priori as there is not a simple, direct correspondence between evidence accumulation dynamics and the optimal policy.
Investigating the consequences for optimal decision-making when input-dependent noise is added to decision process was done by modifying the code made available by (Reference Tajima, Drugowitsch and PougetTajima et al., 2016) from their pioneering study. In the next section we report the technical details of our simulation, and in the final section we discuss the implications of our results for decision making research.
2 Methods and Results
Through numerical simulations, we investigate the effect of magnitude-sensitive noise on binary decision-making. We follow the same assumptions of the value-based decision-making framework described by (Reference Tajima, Drugowitsch and PougetTajima et al., 2016). The decision-maker must choose between two alternatives with potentially different rewards, r 1 and r 2 (e.g., nutritional or monetary value). The rewards are unknown to the decision-maker, who acquires through observation some momentary evidence dr i,t ∼ ( r i dt, Γ(r 1,r 2) dt ) for both options i∈ {1,2} simultaneously, in repeated small time steps of duration dt≪1. Momentary evidence is sampled from a normal distribution with mean proportional to the true reward value and its variance representing ambiguity, due to both exogenous and endogenous noise, that in line with previous work (Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Bose, Pirrone, Reina and MarshallBose et al., 2020), we model as an input-dependent function, which reads as
where the parameters σ and Φ are the strength of input-independent and input-dependent noise, respectively (Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Bose, Pirrone, Reina and MarshallBose et al., 2020). Therefore, for Φ=0, evidence integration has constant noise only, while for Φ>0, we can observe the effect of magnitude-sensitive noise.
Our decision-maker, at the beginning of a trial, has equal prior expectations for both alternatives, that we model as normally distributed prior beliefs . We assume that prior expectation is the same for both options. According to Bayesian theory, after time t, the posterior mean, or expected reward1(t), is:
where ∑τ ∈ tdx i,τ is the sum of evidence for option i, with i∈{1,2}, at time τ ∈ {dt,2dt,…,t}. The decision-makers also incurs a decision cost c=0.1 per temporal unit taken to make the decision. Therefore, when making a decision for option i at time t, the decision-maker receives the reward r i reduced by the temporal cost ct (for example, the energy or cognitive cost invested in integrating evidence).
In order to maximise reward and minimise cost, the decision-maker updates over time the expected rewards,1(t) and2(t), until the integrated evidence has reduced ambiguity sufficiently enough to determine reliably which option has the higher expected reward.
We test both the case of single decisions and of sequential decisions. In the latter, we assume a constant waiting time between decisions t w=1, thus the total temporal cost is ct+t w, and the decision-maker aims to maximise the reward rate.
(Reference Tajima, Drugowitsch and PougetTajima et al., 2016) showed that, in both single and sequential decision-making, through dynamic programming and the Bellman’s equation it is possible to compute the optimal policy, which consists in sampling new information until the difference of the expected rewards, x(t) =1(t) −2(t), is larger than a threshold z(t) that decreases over time (collapsing boundaries), i.e. x(t) ≥ z(t) or x(t) ≤ −z(t). Note that in (Reference Tajima, Drugowitsch and PougetTajima et al., 2016), and in our current work, the collapsing boundaries are not a preexisting assumption; the collapsing boundaries are derived (i.e., found) as part of the optimal policy. Once the threshold is reached, the decision-maker chooses the alternative with the highest expected reward: max(1(t),2(t)). This optimal policy can be implemented by the drift diffusion model (Reference Ratcliff and McKoonRatcliffMcKoon, 2008, Reference Ratcliff, Smith, Brown and McKoonRatcliff et al., 2016) with collapsing boundaries. The drift diffusion model is composed by two terms that describe the momentary change of x(t) as
where dW is the increment of a normally distributed Wiener process, dW ∼ (0,1).
Figure 1 shows how the threshold ± z(t) moves over time in the bidimensional space of the two expected rewards,1(t) and2(t). In graphical representations of the drift diffusion model, the x-axis generally represents time and the y-axis represents difference in evidence (or value) between the alternatives. In this case the collapsing boundaries are parallel to the x-axis and orthogonal to the y-axis. However, in the case of the optimal strategy for value-based decisions, it is easier to communicate interesting decision dynamics in terms of a rotated space in which the two axes represent the value of each alternative and the boundaries are parallel to the diagonal with unitary slope in the 2-dimensional reward space, as in Figure 1. The rotation of axes does not change the interpretation of decision dynamics in any way; it only simplifies the graphical representation of the optimal decision policy.
The two boundaries are parallel to each other with unity slopes, separating the space into three regions. When the expected difference between the rewards, x(t), exceeds the threshold ± z(t) (top-left and bottom-right regions of the plots of Figure 1), the decision is made in favour of the highest expected reward; instead, when the difference is not large enough (central region), the decision-maker chooses to accumulate further evidence. As the policy depends only on the difference between rewards, it is insensitive to the overall magnitude of the alternatives (r 1+r 2), therefore choices for equal alternatives with low and high magnitude have the same decision time (see also Reference Steverson, Chung, Zimmermann, Louie and GlimcherSteverson et al., 2019, Reference MarshallMarshall, 2019).
We simulated decisions for equal quality alternatives (i.e., r 1 = r 2 = r) where we varied only their magnitude r ∈ {0,0.1,0.2,…,1.5}. We computed the optimal thresholds ± z(t) using the code that Satohiro Tajima shared with us (code that was further modified by James A.R. Marshall, and is available on GitHubFootnote 1), from his 2016 paper. Figure 2 shows the average reaction time for 103 simulations in each condition with time step length dt=0.01, prior mean µπ=0, and prior variance =5. We can see that when Φ=0, the noise is input-independent, constant to a fixed value σ2=2, and in turn the reaction time is also constant. This result is in agreement with previous analyses (Reference Tajima, Drugowitsch and PougetTajima et al., 2016, Reference Steverson, Chung, Zimmermann, Louie and GlimcherSteverson et al., 2019, Reference MarshallMarshall, 2019). Instead, when Φ>0, we can appreciate a decrease in the reaction time with increasing magnitude. As Φ increases, value-sensitivity is more evident. This effect is qualitatively similar for both single and sequential decisions, as results show in Figures 2 and Figure 3, respectively.
Note that input-dependent noise predicts faster and less ‘accurate’ responses, meaning that accuracy over near-equal high-magnitude alternatives is sacrificed in favour of a fast response. This pattern was observed empirically (Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Ratcliff, Voskuilen and TeodorescuRatcliff et al., 2018) and in simulation-based studies (Reference Bose, Pirrone, Reina and MarshallBose et al., 2020). Overall, this is a key prediction of any magnitude-sensitive mechanism (Reference Pirrone, Stafford and MarshallPirrone et al., 2014, Reference Pirrone, Azab, Hayden, Stafford and MarshallPirrone et al., 2018a, Reference Pirrone, Wen and LiPirrone et al., 2018b, Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Kirkpatrick, Turner and SederbergKirkpatrick et al., 2021, Reference Steverson, Chung, Zimmermann, Louie and GlimcherSteverson et al., 2019, Reference Marshall, Reina and PirroneMarshall et al., 2021, Reference MarshallMarshall, 2019). However, in our study, in line with previous investigation of magnitude sensitivity (Reference Pirrone, Stafford and MarshallPirrone et al., 2014, Reference Pirrone, Azab, Hayden, Stafford and MarshallPirrone et al., 2018a, Reference Dussutour, Ma and SumpterDussutour et al., 2019), we focus exclusively on equal alternatives; that is, in each trial, the two alternatives are identical. Equal alternatives allow to appreciate magnitude effects in the absence of confounds introduced by maintaining differences between unequal alternatives constant while increasing their magnitude (Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Ratcliff, Voskuilen and TeodorescuRatcliff et al., 2018, Reference Smith and KrajbichSmithKrajbich, 2019). As such, our simulations and results are based on reaction times alone since it is not possible to define accuracy in a choice between equal alternatives.
3 Discussion
Our work investigates the repercussions for optimal value-based decision-making if an input-dependent noise component is added to the decision making process. Input-dependent noise has received ample support (Reference Brunton, Botvinick and BrodyBrunton et al., 2013, Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Ratcliff, Voskuilen and TeodorescuRatcliff et al., 2018, Reference Lu and DosherLuDosher, 2008, Reference Louie, Khaw and GlimcherLouie et al., 2013), with experimental and modelling work showing that, during evidence accumulation, the dominant source of noise is input-dependent. This contrasts with classical drift diffusion models (Reference Ratcliff and McKoonRatcliffMcKoon, 2008), in which only a source of constant processing noise is assumed. It is important to highlight that input-dependent noise per se does not assume or predict optimal magnitude-sensitivity — there is no a priori relationship between the two. In this paper, we have established through numerical simulations that the optimal policy for value-based decision-making, which was derived with input-dependent noise, gives rise to magnitude-sensitivity. In the optimal policy, boundaries are still parallel; however, the noise makes the signal fluctuate more for high-magnitude conditions compared to low-magnitude conditions. In the case of equal alternatives, the boundaries are hit only through noise, and therefore higher noise makes the accumulated evidence (which is on average null) fluctuate more and hit a random boundary quicker than when lower noise is applied. Interestingly, while input-dependent noise accounts for magnitude-sensitivity with parallel boundaries, all other magnitude-sensitive optimal accounts (i.e., non-linear utility, non-linear cost of time) predict instead that magnitude-sensitivity arises as a function of non-parallel collapsing boundaries (Reference Tajima, Drugowitsch and PougetTajima et al., 2016, Reference MarshallMarshall, 2019, Reference Steverson, Chung, Zimmermann, Louie and GlimcherSteverson et al., 2019). While there is evidence that in some cases decisions are best described by parallel collapsing boundaries (Reference Milosavljevic, Malmaud, Huth, Koch and RangelMilosavljevic et al., 2010, Reference Palestro, Weichart, Sederberg and TurnerPalestro et al., 2018, Reference Hawkins, Forstmann, Wagenmakers, Ratcliff and BrownHawkins et al., 2015), there is no empirical evidence for non-parallel collapsing boundaries in decision making, as predicted by the non-linear utility and cost of time accounts.
Input-dependent noise enriches the modelling account of decision making by including a neurally plausible assumption (Reference Brunton, Botvinick and BrodyBrunton et al., 2013, Reference Lu and DosherLuDosher, 2008, Reference Teodorescu, Moran and UsherTeodorescu et al., 2016). Furthermore, previous studies have demonstrated that input-dependent noise increases goodness of fit (Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Bose, Pirrone, Reina and MarshallBose et al., 2020, Reference Ratcliff, Voskuilen and TeodorescuRatcliff et al., 2018) compared to some competing accounts (e.g., the leaky competing accumulator model, race models, the canonical drift diffusion model; see Reference Teodorescu, Moran and Usher(Teodorescu et al., 2016), Reference Bose, Pirrone, Reina and Marshall(Bose et al., 2020), Reference Ratcliff, Voskuilen and Teodorescu(Ratcliff et al., 2018); but also see Reference Kirkpatrick, Turner and Sederberg(Kirkpatrick et al., 2021)). Moreover, input-dependent noise is a feature that could allow magnitude-sensitivity, and hence the maximisation of reward, across various types of decision making and tasks. This latter aspect — magnitude-sensitivity across tasks and domains — makes input-dependent noise a particularly attractive account for magnitude-sensitivity: while explanations of magnitude-sensitive reaction times based on non-linear utility and/or cost of time could be applied ad-hoc to a number of cases, there are numerous scenarios in which the decision-making problem faced by agents may be better described by linear utility and linear cost of time – for example in tasks in which reward is fixed and there is no penalty for a wrong response. Theoretically, we believe that the assumption of linear cost of time and linear subject utility are a reasonable first hypothesis to be explored before considering non-linear functions.
The hypothesis of input-dependent noise addresses all problems discussed above: input-dependent noise is based on strong empirical data and applies to any task, regardless of the nature of the stimuli, the number of alternatives, the specific loss function, the utility function and/or the subject’s utility. In fact, regardless of whether it is endogenous or exogenous, noise characterises virtually all decision-making problems, regardless of their specific details. Hence, we believe that input-dependent noise could provide a theoretically parsimonious explanation of descriptive and optimal magnitude-sensitive decision-making.
Interestingly, we show that both single choices and sequence of choices (i.e., the policy maximising reward of a sequence of trials) are magnitude-sensitive with input-dependent noise. This result is in line with the observed results of magnitude-sensitivity that characterises decision-making from unicellular organisms (Reference Dussutour, Ma and SumpterDussutour et al., 2019) to monkeys (Reference Pirrone, Azab, Hayden, Stafford and MarshallPirrone et al., 2018a) and humans across a variety of tasks — both in perceptual and value-based choices (Reference Pais, Hogan, Schlegel, Franks, Leonard and MarshallPais et al., 2013, Reference Pirrone, Wen and LiPirrone et al., 2018b, Reference Bose, Reina and MarshallBose et al., 2017, Reference Teodorescu, Moran and UsherTeodorescu et al., 2016, Reference Ratcliff, Voskuilen and TeodorescuRatcliff et al., 2018, Reference Steverson, Chung, Zimmermann, Louie and GlimcherSteverson et al., 2019, Reference Hunt, Kolling, Soltani, Woolrich, Rushworth and BehrensHunt et al., 2012, Reference Kvam and PleskacKvamPleskac, 2016, Reference Smith and KrajbichSmithKrajbich, 2019, Reference Kirkpatrick, Turner and SederbergKirkpatrick et al., 2021) and for both single trials and sequence of choices.
However, it is important to mention that the quantitative predictions of optimal decision-making with input-dependent noise have not yet been compared to those of non-linear utility and non-linear cost of time accounts, and this is a timely question for future research that should aim at selecting the best candidate. Furthermore, future empirical studies should investigate the extent to which participants are able to adjust decision boundaries in order to approach optimality as predicted by numerical simulations.
Overall, our contribution enriches Tajima et al.’s (2016) work; we believe that future research could benefit from a similar approach in which, building on Tajima et al.’s (2016) work (and code), assumptions are relaxed in order to account for ecological and naturalistic decision-making.