Hostname: page-component-5cf477f64f-xc2pj Total loading time: 0 Render date: 2025-04-01T17:53:58.222Z Has data issue: false hasContentIssue false

When the day ends: Review on the importance of nocturnal moths as pollinators in tropical ecosystems

Published online by Cambridge University Press:  28 March 2025

Michal Barták*
Affiliation:
Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
Robert Tropek*
Affiliation:
Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czechia
*
Corresponding authors: Michal Barták; Email: [email protected], Robert Tropek; Email: [email protected]
Corresponding authors: Michal Barták; Email: [email protected], Robert Tropek; Email: [email protected]

Abstract

Despite the tropics harbouring tremendous diversity of species and interspecific interactions, tropical moths as pollinators remain understudied. This review synthesises the available knowledge on the role of nocturnal moths in pollination and their importance in tropical ecosystems. It identifies significant research gaps, methodological challenges, and geographical biases, offering cues for future research. Moths represent crucial pollinators for numerous tropical plants across more than 25 families. In tropical communities, plants with sphingophilous and phalaenophilous flowers account for 4% to 13%, while moth-pollinated plants represent up to 20% of species, highlighting their ecological significance. Current knowledge shows biases and constraints stemming from the challenges of nocturnal research, such as complex moth behaviour, observational difficulties, and equipment limitations in tropical areas. Future research should broaden sampling in understudied tropical ecosystems and combine advanced technologies like video recordings, AI-driven identification, and pollen metabarcoding with detailed studies of nocturnal pollinators’ effectiveness in selected pollination systems. Moreover, such studies should integrate generalised pollination systems and community-level approaches to gather comprehensive datasets on nocturnal pollinators in the tropics. Filling these gaps is critical to understanding moths’ ecological and evolutionary roles, particularly in the context of the changing climate.

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albuquerque-Lima, S, Domingos-Melo, A, Nadia, TCL, Bezerra, ELS, Navarro, DMAF, Milet-Pinheiro, P and Machado, IC (2020) An explosion of perfume: Mass flowering and sphingophily in the Caatinga dry region in Brazil. Plant Species Biology 35(3), 243255.CrossRefGoogle Scholar
Amorim, FW, Galetto, L and Sazima, M (2013) Beyond the pollination syndrome: Nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Plant Biology 15(2), 317327.CrossRefGoogle ScholarPubMed
Amorim, FW, Marino, S, Sanz-Veiga, PA, Ollerton, J and Oliveira, PE (2022) Short flowers for long tongues: Functional specialization in a nocturnal pollination network of an asclepiad in long-tongued hawkmoths. Biotropica 54(3), 729738.Google Scholar
Amorim, FW, Wyatt, GE and Sazima, M (2014) Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil. Naturwissenschaften 101(11), 893905.Google ScholarPubMed
Arizaga, S, Ezcurra, E, Peters, E, De Arellano, FR and Vega, E (2000) Pollination ecology of Agave macroacantha (Agavaceae) in a Mexican tropical desert. I. Floral biology and pollination mechanisms. American Journal of Botany 87(7), 10041010.CrossRefGoogle Scholar
Balducci, MG, Martins, DJ and Johnson, SD (2019) Pollination of the long-spurred African terrestrial orchid Bonatea steudneri by long-tongued hawkmoths, notably Xanthopan morganii . Plant Systematics and Evolution 305(9), 765775.Google Scholar
Balducci, MG, Van Der Niet, T and Johnson, SD (2020) Diel scent and nectar rhythms of an African orchid in relation to bimodal activity patterns of hawkmoth pollinators. Annals of Botany 126(7), 11551164.CrossRefGoogle ScholarPubMed
Balkenius, A and Dacke, M (2013) Learning of multi-modal stimuli in hawkmoths. PLoS ONE 8(7), e71137.CrossRefGoogle ScholarPubMed
Balkenius, A, Rosén, W and Kelber, A (2006) The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. Journal of Comparative Physiology A 192(4), 431437.Google Scholar
Basset, Y, Cizek, L, Cuénoud, P, Didham, RK, Guilhaumon, F, Missa, O, Novotny, V, Ødegaard, F, Roslin, T, Schmidl, J, Tishechkin, AK, Winchester, NN, Roubik, DW, Aberlenc, H-P, Bail, J, Barrios, H, Bridle, JR, Castaño-Meneses, G, Corbara, B, Curletti, G, Duarte Da Rocha, W, De Bakker, D, Delabie, JHC, Dejean, A, Fagan, LL, Floren, A, Kitching, RL, Medianero, E, Miller, SE, Gama De Oliveira, E, Orivel, J, Pollet, M, Rapp, M, Ribeiro, SP, Roisin, Y, Schmidt, JB, Sørensen, L and Leponce, M (2012) Arthropod diversity in a tropical forest. Science 338(6113), 14811484.Google Scholar
Baum, DA (1995) The comparative pollination and floral biology of baobabs (Adansonia- Bombacaceae). Annals of the Missouri Botanical Garden 82(2), 322.CrossRefGoogle Scholar
Bawa, KS (1990) Plant-pollinator interactions in tropical rain forests. Annual Review of Ecology and Systematics 21, 399422.Google Scholar
Bawa, KS, Bullock, SH, Perry, DR, Coville, RE and Grayum, MH (1985) Reproductive biology of tropical lowland rain forest trees. ii. Pollination systems. American Journal of Botany 72(3), 346356.CrossRefGoogle Scholar
Beccaloni, G, Scoble, M, Kitching, I, Simonsen, T, Robinson, G, Pitkin, B, Hine, A, Lyal, C, Ollerenshaw, J, Wing, P and Hobern, D (2024) Global Lepidoptera Index. (Version 1.1.24.307). ChecklistBank. https://doi.org/10.48580/dgnz3-49xk (accessed 05-Dec-2024).CrossRefGoogle Scholar
Bell, KL, De Vere, N, Keller, A, Richardson, RT, Gous, A, Burgess, KS and Brosi, BJ (2016) Pollen DNA barcoding: Current applications and future prospects. Genome 59(9), 629640.CrossRefGoogle ScholarPubMed
Boyes, DH, Evans, DM, Fox, R, Parsons, MS and Pocock, MJO (2021) Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conservation and Diversity 14(2), 167187.Google Scholar
Buxton, MN, Gaskett, AC, Lord, JM and Pattemore, DE (2022) A global review demonstrating the importance of nocturnal pollinators for crop plants. Journal of Applied Ecology 59(12), 28902901.CrossRefGoogle Scholar
Chen, Q, Liu, X, Cao, S, Ma, B, Guo, M, Shen, J and Wang, G (2021) Fine structure and olfactory reception of the labial palps of Spodoptera frugiperda . Frontiers in Physiology 12, 680697.Google ScholarPubMed
Chmel, K, Ewome, FL, Gómez, GU, Klomberg, Y, Mertens, JEJ, Tropek, R and Janeček, Š (2021) Bird pollination syndrome is the plant’s adaptation to ornithophily, but nectarivorous birds are not so selective. Oikos 130(8), 14111424.CrossRefGoogle Scholar
Corlett, RT (2001) Pollination in a degraded tropical landscape: A Hong Kong case study. Journal of Tropical Ecology 17(1), 155161.Google Scholar
Cox, PA and Grubb, PJ (1991) Abiotic pollination: An evolutionary escape for animal-pollinated angiosperms [and discussion]. Philosophical Transactions: Biological Sciences 333(1267), 217224.Google Scholar
Dafni, A (1992) Pollination Ecology: A Practical Approach. Oxford [England]; New York: IRL Press at Oxford University Press.Google Scholar
de Camargo, AJA, de Camargo, NF, Corrêa, DCV, De Camargo, WRF, Vieira, EM, Marini-Filho, O and Amorim, FW (2016) Diversity patterns and chronobiology of hawkmoths (Lepidoptera, Sphingidae) in the Brazilian Amazon rainforest. Journal of Insect Conservation 20(4), 629641.Google Scholar
Devy, MS and Davidar, P (2003) Pollination systems of trees in Kakachi, a mid-elevation wet evergreen forest in Western Ghats, India. American Journal of Botany 90(4), 650657.CrossRefGoogle ScholarPubMed
Draper, FC, Baker, TR, Baraloto, C, Chave, J, Costa, F, Martin, RE, Pennington, RT, Vicentini, A and Asner, GP (2020) Quantifying tropical plant diversity requires an integrated technological approach. Trends in Ecology & Evolution 35(12), 11001109.CrossRefGoogle ScholarPubMed
Faegri, K and Pijl, L van der (1979) The Principles of Pollination Ecology, 3d rev. ed. Oxford; New York: Pergamon Press.Google Scholar
Fleming, TH and Holland, JN (1998) The evolution of obligate pollination mutualisms: Senita cactus and senita moth. Oecologia 114(3), 368375.Google ScholarPubMed
Freitas, L and Sazima, M (2006) Pollination biology in a tropical high-altitude grassland in Brazil: Interactions at the community level. Annals of the Missouri Botanical Garden 93(3), 465516.CrossRefGoogle Scholar
Gewin, V (2023) Pack up the parachute: Why global north–south collaborations need to change. Nature 619, 885887.CrossRefGoogle ScholarPubMed
Ghazoul, J (1997) The pollination and breeding system of Dipterocarpus obtusifolius (Dipterocarpaceae) in dry deciduous forests of Thailand. Journal of Natural History 31(6), 901916.Google Scholar
Gottsberger, G and Silberbauer-Gottsberger, I (2018) How are pollination and seed dispersal modes in Cerrado related to stratification? Trends in a Cerrado sensu stricto woodland in southeastern Brazil, and a comparison with Neotropical forests. Acta Botanica Brasilica 32(3), 434445.Google Scholar
Govaerts, R (2024) The World Checklist of Vascular Plants (WCVP). Version 13.0. https://doi.org/10.48580/dgh3g-4nz (accessed 05-Dec-2024).CrossRefGoogle Scholar
Grimaldi, DA and Engel, MS (2005) Evolution of the Insects. Cambridge, UK: Cambridge University Press.Google Scholar
Groffen, J, Rethus, G and Pettigrew, J (2016) Promiscuous pollination of Australia’s baobab, the boab, Adansonia gregorii. Australian Journal of Botany 64(8), 678686.CrossRefGoogle Scholar
Hansman, DJ (2001) Floral biology of dry rainforest in north Queensland and a comparison with adjacent savanna woodland. Australian Journal of Botany 49(2), 137153.Google Scholar
Hernández-Montero, JR and Sosa, VJ (2016) Reproductive biology of Pachira aquatica Aubl. (Malvaceae: Bombacoideae): A tropical tree pollinated by bats, sphingid moths and honey bees: Reproductive biology of Pachira aquatica . Plant Species Biology 31(2), 125134.Google Scholar
Inouye, DW (1980) The terminology of floral larceny. Ecology 61(5), 12511253.CrossRefGoogle Scholar
Irwin, RE, Brody, AK and Waser, NM (2001) The impact of floral larceny on individuals, populations, and communities. Oecologia 129(2), 161168.CrossRefGoogle ScholarPubMed
Irwin, RE, Bronstein, JL, Manson, JS and Richardson, L (2010) Nectar robbing: Ecological and evolutionary perspectives. Annual Review of Ecology, Evolution, and Systematics 41(1), 271292.Google Scholar
Johnson, SD (2001) Hawkmoth pollination and hybridization in Delphinium leroyi (Ranunculaceae) on the Nyika Plateau, Malawi. Nordic Journal of Botany 21(6), 599605.Google Scholar
Johnson, SD, Balducci, MG and Shuttleworth, A (2020) Hawkmoth pollination of the orchid Habenaria clavata: Mechanical wing guides, floral scent and electroantennography. Biological Journal of the Linnean Society 129(1), 213226.Google Scholar
Johnson, SD, Moré, M, Amorim, FW, Haber, WA, Frankie, GW, Stanley, DA, Cocucci, AA and Raguso, RA (2017) The long and the short of it: A global analysis of hawkmoth pollination niches and interaction networks. Functional Ecology 31(1), 101115.Google Scholar
Johnson, SD and Raguso, RA (2016) The long-tongued hawkmoth pollinator niche for native and invasive plants in Africa. Annals of Botany 117(1), 2536.CrossRefGoogle ScholarPubMed
Karimi, N, Saghafi, S, Keefover-Ring, K, Venter, SM, Ané, C and Baum, DA (2021) Evidence for hawkmoth pollination in the chiropterophilous African baobab (Adansonia digitata). Biotropica 54(1), 123124.Google Scholar
Kato, M (1996) Plant-pollinator interactions in the understory of a lowland mixed dipterocarp forest in Sarawak. American Journal of Botany 83(6), 732743.Google Scholar
Kato, M and Kawakita, A (2004) Plant-pollinator interactions in New Caledonia influenced by introduced honey bees. American Journal of Botany 91(11), 18141827.CrossRefGoogle ScholarPubMed
Kato, M, Kosaka, Y, Kawakita, A, Okuyama, Y, Kobayashi, C, Phimminith, T and Thongphan, D (2008) Plant-pollinator interactions in tropical monsoon forests in Southeast Asia. American Journal of Botany 95(11), 13751394.CrossRefGoogle ScholarPubMed
Kawahara, AY, Plotkin, D, Espeland, M, Meusemann, K, Toussaint, EFA, Donath, A, Gimnich, F, Frandsen, PB, Zwick, A, dos Reis, M, Barber, JR, Peters, RS, Liu, S, Zhou, X, Mayer, C, Podsiadlowski, L, Storer, C, Yack, JE, Misof, B and Breinholt, JW (2019) Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences 116(45), 2265722663.CrossRefGoogle ScholarPubMed
Kawakita, A (2010) Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Species Biology 25(1), 319.CrossRefGoogle Scholar
Kelber, A (2003) Colour vision in diurnal and nocturnal hawkmoths. Integrative and Comparative Biology 43(4), 571579.CrossRefGoogle ScholarPubMed
Keys, RN, Buchmann, SL and Smith, SE (1995) Pollination Effectiveness and Pollination Efficiency of Insects Foraging Prosopis velutina in South-Eastern Arizona. The Journal of Applied Ecology 32(3), 519.Google Scholar
King, C, Ballantyne, G and Willmer, PG (2013) Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution 4(9), 811818.CrossRefGoogle Scholar
Klahre, U, Gurba, A, Hermann, K, Saxenhofer, M, Bossolini, E, Guerin, PM and Kuhlemeier, C (2011) Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Current Biology 21(9), 730739.Google ScholarPubMed
Klomberg, Y, Tropek, R, Mertens, JEJ, Kobe, IN, Hodeček, J, Raška, J, Fominka, NT, Souto-Vilarós, D, Janečková, P and Janeček, Š (2022) Spatiotemporal variation in the role of floral traits in shaping tropical plant-pollinator interactions. Ecology Letters 25(4), 839850.CrossRefGoogle ScholarPubMed
Knudsen, JT and Tollsten, L (1993) Trends in floral scent chemistry in pollination syndromes: Floral scent composition in moth-pollinated taxa. Botanical Journal of the Linnean Society 113(3), 263284.CrossRefGoogle Scholar
Krenn, HW (2010) Feeding mechanisms of adult Lepidoptera: Structure, function, and evolution of the mouthparts. Annual Review of Entomology 55, 307327.Google ScholarPubMed
Liang, J, Gamarra, JGP, Picard, N, Zhou, M, Pijanowski, B, Jacobs, DF, Reich, PB, Crowther, TW, Nabuurs, GJ, de-Miguel, S, Fang, J, Woodall, CW, Svenning, JC, Jucker, T, Bastin, JF, Wiser, SK, Slik, F, Hérault, B, Alberti, G, Keppel, G, Hengeveld, GM, Ibisch, PL, Silva, CA, ter Steege, HH, Peri, PL, Coomes, DA, Searle, EB, von Gadow, K, Jaroszewicz, B, Abbasi, AO, Abegg, M, Adou-Yao, YC, Aguirre-Gutiérrez, J, Almeyda-Zambrano, AM, Altman, J, Alvarez-Dávila, E, Álvarez-González, JG, Alves, LF, Amani, BHK, Amani, CA, Ammer, C, Angoboy-Ilondea, B, Antón-Fernández, C, Avitabile, V, Aymard, GA, Azihou, AF, Baard, JA, Baker, TR, Balazy, R, Bastian, ML, Batumike, R, Bauters, M, Beeckman, H, Benu, NMH, Bitariho, R, Boeckx, P, Bogaert, J, Bongers, F, Bouriaud, O, Brancalion, PHS, Brandl, S, Brearley, FQ, Briseno-Reyes, J, Broadbent, EN, Bruelheide, H, Bulte, E, Catlin, AC, Cazzolla-Gatti, R, César, RG, Chen, HYH, Chisholm, C, Cienciala, E, Colletta, GD, Corral-Rivas, JJ, Cuchietti, A, Cuni-Sanchez, A, Dar, JA, Dayanandan, S, de Haulleville, T, Decuyper, M, Delabye, S, Derroire, G, DeVries, B, Diisi, J, Do, TV, Dolezal, J, Dourdain, A, Durrheim, GP, Engone-Obiang, NL, Ewango, CEN, Eyre, TJ, Fayle, TM, Feunang, LFN, Finér, L, Fischer, M, Fridman, J, Frizzera, L, de Gasper, AL, Gianelle, D, Glick, HB, Gonzalez-Elizondo, MS, Gorenstein, L, Habonayo, R, Hardy, OJ, Harris, DJ, Hector, A, Hemp, A, Herold, M, Hillers, A, Hubau, W, Ibanez, T, Imai, N, Imani, G, Jagodzinski, AM, Janecek, S, Johannsen, VK, Joly, CA, Jumbam, B, Kabelong, BLPR, Kahsay, GA, Karminov, V, Kartawinata, K, Kassi, JN, Kearsley, E, Kennard, DK, Kepfer-Rojas, S, Khan, ML, Kigomo, JN, Kim, HS, Klauberg, K, Klomberg, Y, Korjus, H, Kothandaraman, S, Kraxner, F, Kumar, A, Kuswandi, R, Lang, M, Lawes, MJ, Leite, RV, Lentner, G, Lewis, SL, Libalah, MB, Lisingo, J, López-Serrano, PM, Lu, H, Lukina, NV, Lykke, AM, Maicher, V, Maitner, BS, Marcon, E, Marshall, AR, Martin, EH, Martynenko, O, Mbayu, FM, Mbuvi, MTE, Meave, JA, Merow, C, Miscicki, S, Moreno, VS, Morera, A, Mukul, SA, Müller, JC, Murdjoko, A, Nava-Miranda, MG, Ndive, LE, Neldner, VJ, Nevenic, RV, Nforbelie, LN, Ngoh, ML, N’Guessan, AE, Ngugi, MR, Ngute, ASK, Njila, ENN, Nyako, MC, Ochuodho, TO, Oleksyn, J, Paquette, A, Parfenova, EI, Park, M, Parren, M, Parthasarathy, N, Pfautsch, S, Phillips, OL, Piedade, MTF, Pijanowski, BC, Piotto, D, Pollastrini, M, Poorter, L, Poulsen, JR, Poulsen, AD, Pretzsch, H, Rodeghiero, M, Rolim, SG, Rovero, F, Rutishauser, E, Sagheb-Talebi, K, Saikia, P, Sainge, MN, Salas-Eljatib, C, Salis, A, Schall, P, Schepaschenko, D, Scherer-Lorenzen, M, Schmid, B, Schöngart, J, Šebeň, V, Sellan, G, Selvi, F, Serra-Diaz, JM, Sheil, D, Shvidenko, AZ, Sist, P, Souza, AF, Stereńczak, KJ, Sullivan, MJP, Sundarapandian, S, Svoboda, M, Swaine, MD, Targhetta, N, Tchebakova, N, Trethowan, LA, Tropek, R, Tshibamba-Mukendi, J, Umunay, PM, Usoltsev, VA, Vaglio-Laurin, G, Valentini, R, Valladares, F, van der Plas, F, Vega-Nieva, DJ, Verbeeck, H, Viana, H, Vibrans, AC, Vieira, SA, Vleminckx, J, Waite, CE, Wang, HF, Wasingya, EK, Wekesa, C, Westerlund, B, Wittmann, F, Wortel, V, Zawiła-Niedźwiecki, T, Zhang, C, Zhao, X, Zhu, J, Zhu, X, Zhu, ZX, Zo-Bi, IC and Hui, C (2022) Co-Limitation toward lower latitudes shapes global forest diversity gradients. Nature Ecology & Evolution 6, 14231437.Google Scholar
Machado, IC and Lopes, AV (2004) Floral traits and pollination systems in the Caatinga, a Brazilian tropical dry forest. Annals of Botany 94(3), 365376.Google ScholarPubMed
Maicher, V, Sáfián, S, Murkwe, M, Przybyłowicz, Ł, Janeček, Š, Fokam, EB, Pyrcz, T and Tropek, R (2018) Flying between raindrops: Strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon. Ecology and Evolution 8(24), 1276112772.CrossRefGoogle ScholarPubMed
Manning, JC and Goldblatt, P (2005) Radiation of pollination systems in the Cape genus Tritoniopsis (Iridaceae: Crocoideae) and the development of bimodal pollination strategies. International Journal of Plant Sciences 166(3), 459474.Google Scholar
Martín González, AM, Dalsgaard, B, Nogués-Bravo, D, Graham, CH, Schleuning, M, Maruyama, PK, Abrahamczyk, S, Alarcón, R, Araujo, AC, Araújo, FP, de Azevedo, SM Jr, Baquero, AC, Cotton, PA, Ingversen, TT, Kohler, G, Lara, C, Las-Casas, FMG, Machado, AO, Machado, CG, Maglianesi, MA, McGuire, JA, Moura, AC, Oliveira, GM, Oliveira, PE, Ornelas, JF, Rodrigues, L da C, Rosero-Lasprilla, L, Rui, AM, Sazima, M, Timmermann, A, Varassin, IG, Vizentin-Bugoni, J, Wang, Z, Watts, S, Rahbek, C and Martinez, ND (2015) The macroecology of phylogenetically structured hummingbird–plant networks. Global Ecology and Biogeography 24(11), 12121224.CrossRefGoogle Scholar
Martins, DJ and Johnson, SD (2007) Hawkmoth pollination of aerangoid orchids in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. American Journal of Botany 94(4), 650659.CrossRefGoogle ScholarPubMed
Martins, DJ and Johnson, SD (2013) Interactions between hawkmoths and flowering plants in East Africa: Polyphagy and evolutionary specialization in an ecological context: Hawkmoth pollination in East Africa. Biological Journal of the Linnean Society 110(1), 199213.Google Scholar
Maruyama, PK, Amorim, FW and Oliveira, PE (2010) Night and day service: Distyly and mixed pollination system in Faramea cyanea (Rubiaceae). Flora - Morphology, Distribution, Functional Ecology of Plants 205(12), 818824.Google Scholar
Mertens, JEJ, Brisson, L, Janeček, Š, Klomberg, Y, Maicher, V, Sáfián, S, Delabye, S, Potocký, P, Kobe, IN, Pyrcz, T and Tropek, R (2021) Elevational and seasonal patterns of butterflies and hawkmoths in plant-pollinator networks in tropical rainforests of Mount Cameroon. Scientific Reports 11(1), 9710.Google ScholarPubMed
Miranda-Jácome, A, Rodríguez-García, R and Munguía-Rosas, MA (2020) Bats and moths contribute to the reproductive success of the columnar cactus Pilosocereus leucocephalus . Journal of Arid Environments 174, 103990.Google Scholar
Neto, HFP (2013) Floral biology and breeding system of Bauhinia forficata (Leguminosae: Caesalpinioideae), a moth-pollinated tree in southeastern Brazil. Brazilian Journal of Botany 36(1), 5564.CrossRefGoogle Scholar
Nilsson, LA, Johnsson, L, Ralison, L and Randrianjohany, E (1987) Angraecoid orchids and hawkmoths in central Madagascar: Specialized pollination systems and generalist foragers. Biotropica 19(4), 310318.Google Scholar
Nilsson, LA, Jonsson, L, Rason, L and Randrianjohany, E (1985) Monophily and pollination mechanisms in Angraecum arachnites Schltr. (Orchidaceae) in a guild of long-tongued hawk-moths (Sphingidae) in Madagascar. Biological Journal of the Linnean Society 26(1), 119.CrossRefGoogle Scholar
Nilsson, LA, Rabakonandrianina, E, Razananaivo, R and Randriamanindry, J-J (1992) Long pollinia on eyes: Hawk-moth pollination of Cynorkis uniflora Lindley (Orchidaceae) in Madagascar. Botanical Journal of the Linnean Society 109(1), 145160.CrossRefGoogle Scholar
Novotny, V, Drozd, P, Miller, SE, Kulfan, M, Janda, M, Basset, Y and Weiblen, GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313(5790), 11151118.Google ScholarPubMed
Ocampo-Ariza, C, Toledo-Hernández, M, Librán-Embid, F, Armenteras, D, Vansynghel, J, Raveloaritiana, E, Arimond, I, Angulo-Rubiano, A, Tscharntke, T, Ramírez-Castañeda, V, Wurz, A, Marcacci, G, Anders, M, Urbina-Cardona, JN, De Vos, A, Devy, S, Westphal, C, Toomey, A, Sheherazade, CY and Maas, B (2023) Global South leadership towards inclusive tropical ecology and conservation. Perspectives in Ecology and Conservation 21(1), 1724.CrossRefGoogle Scholar
Oliveira, PE, Gibbs, PE and Barbosa, AA (2004) Moth pollination of woody species in the Cerrados of Central Brazil: A case of so much owed to so few? Plant Systematics and Evolution 245(1–2), 4154.Google Scholar
Ollerton, J, Alarcón, R, Waser, NM, Price, MV, Watts, S, Cranmer, L, Hingston, A, Peter, CI and Rotenberry, J (2009) A global test of the pollination syndrome hypothesis. Annals of Botany 103(9), 14711480.CrossRefGoogle ScholarPubMed
Ollerton, J, Johnson, S and Hingston, A (2006) Geographical Variation in Diversity and Specificity of Pollination Systems. Chicago: University of Chicago Press, 283308.Google Scholar
Ollerton, J, Winfree, R and Tarrant, S (2011) How many flowering plants are pollinated by animals? Oikos 120(3), 321326.Google Scholar
Padyšáková, E, Bartoš, M, Tropek, R and Janeček, Š (2013) Generalization versus specialization in pollination systems: Visitors, thieves, and pollinators of hypoestes aristata (Acanthaceae). PLoS ONE 8(4), e59299.CrossRefGoogle ScholarPubMed
Pauw, A and Stanway, R (2014) Unrivalled specialization in a pollination network from South Africa reveals that specialization increases with latitude only in the Southern Hemisphere. Journal of Biogeography 42, 652661.Google Scholar
Pellmyr, O (2003) Yuccas, yucca moths, and coevolution: A review. Annals of the Missouri Botanical Garden 90(1), 3555.CrossRefGoogle Scholar
Pichler, M, Boreux, V, Klein, A, Schleuning, M and Hartig, F (2020) Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Methods in Ecology and Evolution 11(2), 281293.CrossRefGoogle Scholar
Potascheff, C de M, de Brito, VLG, Galetto, L, Sebbenn, AM and Oliveira, PE (2020) Nectar features, diurnal and nocturnal pollinators, and male fitness in Qualea grandiflora (Vochysiaceae). Plant Systematics and Evolution 306(1), 3.CrossRefGoogle Scholar
Powers, JM, Seco, R, Faiola, CL, Sakai, AK, Weller, SG, Campbell, DR and Guenther, A (2020) Floral scent composition and fine-scale timing in two moth-pollinated Hawaiian Schiedea (Caryophyllaceae). Frontiers in Plant Science 11, 1116.CrossRefGoogle ScholarPubMed
Quirino, Z and Machado, I (2014) Pollination syndromes in a Caatinga plant community in Northeastern Brazil: Seasonal availability of floral resources in different plant growth habits. Brazilian Journal of Biology 74(1), 6271.Google Scholar
Rader, R, Bartomeus, I, Garibaldi, LA, Garratt, MPD, Howlett, BG, Winfree, R, Cunningham, SA, Mayfield, MM, Arthur, AD, Andersson, GKS, Bommarco, R, Brittain, C, Carvalheiro, LG, Chacoff, NP, Entling, MH, Foully, B, Freitas, BM, Gemmill-Herren, B, Ghazoul, J, Griffin, SR, Gross, CL, Herbertsson, L, Herzog, F, Hipólito, J, Jaggar, S, Jauker, F, Klein, A-M, Kleijn, D, Krishnan, S, Lemos, CQ, Lindström, SAM, Mandelik, Y, Monteiro, VM, Nelson, W, Nilsson, L, Pattemore, DE, Pereira, N de O, Pisanty, G, Potts, SG, Reemer, M, Rundlöf, M, Sheffield, CS, Scheper, J, Schüepp, C, Smith, HG, Stanley, DA, Stout, JC, Szentgyörgyi, H, Taki, H, Vergara, CH, Viana, BF and Woyciechowski, M (2016) Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences 113(1), 146151.CrossRefGoogle ScholarPubMed
Raguso, RA (2004) Why do flowers smell? The chemical ecology of fragrance-driven pollination. In Cardé, RT and Millar, JG (eds), Advances in Insect Chemical Ecology, 1st edn. Cambridge: Cambridge University Press, 151178.CrossRefGoogle Scholar
Ramírez, N (2004) Pollination specialization and time of pollination on a tropical Venezuelan plain: Variations in time and space. Botanical Journal of the Linnean Society 145(1), 116.Google Scholar
Rocha, EA, Domingos-Melo, A, Zappi, DC and Machado, IC (2019) Reproductive biology of columnar cacti: Are bats the only protagonists in the pollination of Pilosocereus, a typical chiropterophilous genus? Folia Geobotanica 54(3–4), 239256.Google Scholar
Sakhalkar, SP, Janeček, Š, Klomberg, Y, Mertens, JEJ, Hodeček, J and Tropek, R (2023) Cheaters among pollinators: Nectar robbing and thieving vary spatiotemporally with floral traits in Afrotropical forests. Ecosphere 14(11), e4696.Google Scholar
Santos-Gómez, SM, Figueroa-Castro, DM and Castañeda-Posadas, C (2021) Are floral traits good predictors of effective pollinators? A test of pollination syndromes. Ecological Research 37(2), 257269. https://doi.org/10.1111/1440-1703.12285.CrossRefGoogle Scholar
Schulze, CH, Linsenmair, KE and Fiedler, K (2001) Understorey versus canopy: Patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecology 153(1/2), 133152.Google Scholar
Singer, RB (2002) The pollination biology of Sauroglossum elatum Lindl. (Orchidaceae: Spiranthinae): Moth-pollination and protandry in neotropical Spiranthinae. Botanical Journal of the Linnean Society 138(1), 916.CrossRefGoogle Scholar
Solomon Raju, AJ (2019) Pollination ecology of oviparous semi-evergreen mangrove tree species, Xylocarpus granatum Koen and X. mekongensis Pierre. (Meliaceae) at Coringa mangrove forest, Andhra Aradesh, India. Annali Di Botanica 10, 6776.Google Scholar
Souza, IM, Hughes, FM, Funch, LS and Queiroz, LP de (2021) Nocturnal and diurnal pollination in Copaifera coriacea, a dominant species in sand dunes of the Middle São Francisco River Basin, Northeastern Brazil. Plant Ecology and Evolution 154(2), 207216.CrossRefGoogle Scholar
Stebbins, GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: Pollination mechanisms. Annual Review of Ecology and Systematics 1(1), 307326.Google Scholar
Stöckl, AL and Kelber, A (2019) Fuelling on the wing: Sensory ecology of hawkmoth foraging. Journal of Comparative Physiology A 205, 399413.Google ScholarPubMed
Stork, NE (2018) How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology 63(1), 3145.CrossRefGoogle ScholarPubMed
Szyszka, P, Gerkin, RC, Galizia, CG and Smith, BH (2014) High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proceedings of the National Academy of Sciences 111(47), 1692516930.Google ScholarPubMed
van der Kooi, CJ (2021) How much pigment should flowers have? Flowers with moderate pigmentation have highest color contrast. Frontiers in Ecology and Evolution 9, 731626.CrossRefGoogle Scholar
van Dulmen, A (2001) Pollination and phenology of flowers in the canopy of two contrasting rain forest types in Amazonia, Colombia. Plant Ecology 153(1), 7385.Google Scholar
van Nieukerken, EJ, Kaila, L, Kitching, IJ, Kristensen, NP, Lees, DC, Minet, J, Mitter, C, Mutanen, M, Regier, JC, Simonsen, TJ, Wahlberg, N, Yen, S-H, Zahiri, R, Adamski, D, Baixeras, J, Bartsch, D, Bengtsson, , Brown, JW, Bucheli, SR, Davis, DR, Prins, JD, Prins, WD, Epstein, ME, Gentili-Poole, P, Gielis, C, Hättenschwiler, P, Hausmann, A, Holloway, JD, Kallies, A, Karsholt, O, Kawahara, AY, Koster, SJC, Kozlov, MV, Lafontaine, JD, Lamas, G, Landry, J-F, Lee, S, Nuss, M, Park, K-T, Penz, C, Rota, J, Schintlmeister, A, Schmidt, BC, Sohn, J-C, Solis, MA, Tarmann, GM, Warren, AD, Weller, S, Yakovlev, RV, Zolotuhin, VV and Zwick, A (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang Z-Q (ed), Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148(1), 212.CrossRefGoogle Scholar
Vizentin-Bugoni, J, Maruyama, PK, De Souza, CS, Ollerton, J, Rech, AR and Sazima, M (2018) Plant-pollinator networks in the tropics: A review. In Dáttilo, W and Rico-Gray, V (eds), Ecological Networks in the Tropics. Cham: Springer International Publishing, 7391.Google Scholar
Wardhaugh, CW (2015) How many species of arthropods visit flowers? Arthropod-Plant Interactions 9(6), 547565.Google Scholar
Weller, SG, Sakai, AK, Campbell, DR, Powers, JM, Peña, SR, Keir, MJ, Loomis, AK, Heintzman, SM and Weisenberger, L (2017) An enigmatic Hawaiian moth is a missing link in the adaptive radiation of Schiedea . New Phytologist 213(3), 15331542.Google ScholarPubMed
Whittall, JB and Hodges, SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447(7145), 706709.CrossRefGoogle ScholarPubMed
Willmer, P (2011) Pollination and Floral Ecology. Princeton, NJ: Princeton University Press.Google Scholar
Xu, Y, Luo, Z, Gao, S and Zhang, D (2018) Pollination niche availability facilitates colonization of Guettarda speciosa with heteromorphic self-incompatibility on oceanic islands. Scientific Reports 8(1), 13765.Google ScholarPubMed
Yang, M, Wan, T, Dai, C, Zou, X, Liu, F and Gong, Y (2021) Modern honey bees disrupt the pollination of an ancient gymnosperm, Gnetum luofuense . Ecology 102(12), e03497.CrossRefGoogle ScholarPubMed