Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T03:02:48.544Z Has data issue: false hasContentIssue false

Use of Melastomataceae and pteridophytes for revealing phytogeographical patterns in Amazonian rain forests

Published online by Cambridge University Press:  10 July 2009

Kalle Ruokolainen
Affiliation:
Departments of Biology, University of Turku, 20014 Turku, Finland
Ari Linna
Affiliation:
Departments of Geology, University of Turku, 20014 Turku, Finland
Hanna Tuomisto
Affiliation:
Departments of Biology, University of Turku, 20014 Turku, Finland

Abstract

Similarities and differences among eight upland rain forest sites in Peruvian Amazonia were measured separately by using Melastomataceae, pteridophyte and tree species compositions and edaphic characteristics of the sites. All three plant groups showed a similar pattern among the sites, and this pattern could be explained by edaphic differences but not by geographical distances among the sites. The explicability of site-specific edaphic characteristics on the basis of geological history is discussed. The results suggest that both pteridophytes and Melastomataceae can be used as indicators of floristically different rain forest types that are edaphically defined. Distribution patterns of these plant groups can be studied much more rapidly than the patterns of trees and therefore both Melastomataceae and pteridophytes may be used in large scale phytogeographical studies that are urgently needed in the face of rapidly advancing deforestation.

Resumen

Las similitudes y diferencias entre ocho sitios en bosques de tierra firme de la Amazonia peruana fueron medidas utilizando separadamente la composición florística de las Melastomataceae, pteridophitas y especies arboreas, y las características edáficas de estos sitios. Los tres grupos de plantas mostraron un patrón semejante entre los sitios, y este patrón se puede relacionar con las diferencias edáficas, pero no por las distancias geografícas entre los sitios. Se considera la posibilidad de explicar las características edáficas particulares de cada lugar basándose en la historia geológica. Los resultados sugieren que tanto las pteridophitas como las Melastomataceae se pueden utilizar como indicadores de diferentes tipos de bosques húmedos con características edáficas definidas. Los pat rones de distribución de estos grupos de plantas se pueden estudiar mucho más rápido que los patrones de distributión de los árboles. Por ello, las Melastomataceae y pteridophitas pueden utilizarse en estudios fitogeográficos de gran escala requeridos con urgencia ante el rápido avance de la deforestación en la selva Amazónica.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Anderson, A. B. 1981. White-sand vegetation of Brazilian Amazonia. Biotropica 13:199210.Google Scholar
Ashton, P. S. 1969. Speciation among tropical forest trees: some deductions in the light of recent evidence. Biological Journal of the Linnean Society 1:155196.CrossRefGoogle Scholar
Bush, M. B. 1994. Amazonian speciation: a necessarily complex model. Journal of Biogeography 21:517.Google Scholar
Campbell, D. & Hammond, H. D. (eds.). 1989. Floristic inventory of tropical forests: the status of plant systematics, collections, and vegetation, plus recommendations for the future. New York Botanical Garden, New York.Google Scholar
Chesson, P. L. & Warner, R. R. 1981. Environmental variability promotes coexistence in lottery competitive systems. American Naturalist 117:923943.CrossRefGoogle Scholar
Colinvaux, P. 1987. Amazon diversity in light of the paleoecological record. Quaternary Science Review 6:93114.CrossRefGoogle Scholar
Colinvaux, P. 1993. Pleistocene biogeography and diversity in tropical forests of South America. Pp. 473499 in Goldblatt, P. (ed.). Biological relationships between Africa and South America. Yale University Press, New Haven. 630 pp.Google Scholar
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.CrossRefGoogle ScholarPubMed
Connor, E. F. 1986. The role of pleistocene forest refugia in the evolution and biogeography of tropical biotas. Trends in Ecology and Evolution 1:165168.CrossRefGoogle ScholarPubMed
Duivenvoorden, J. F. 1994. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodiversity and Conservation.CrossRefGoogle Scholar
Duivenvoorden, J. F. & Lips, J. M. 1995. A land-ecological study of soils, vegetation, and plant diversity in Colombian Amazonia. Tropenbos Series 12:1438.Google Scholar
Encarnación, F. 1985. Introducción a la flora y vegetación de la Amazonia Peruana: estado actual de los estudios, medio natural y ensayo de claves de determinación de las formaciones vegetales en la llanura Amazónica. Candollea 40:237252.Google Scholar
Endler, J. A. 1982. Pleistocene forest refuges: fact or fancy? Pp. 641657 in Prance, G. T. (ed.). Biological diversification in the tropics. Columbia University Press, New York. 714 pp.Google Scholar
Gentry, A. H. 1981. Distributional patterns and an additional species of the Passiflora vitifolia complex: Amazonian species diversity due to edaphically differentiated communities. Plant Systematics and Evolution 137:95105.CrossRefGoogle Scholar
Gentry, A. H. 1988a. Patterns of plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.CrossRefGoogle Scholar
Gentry, A. H. 1988b. Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Science, USA 85:156159.Google Scholar
Haffer, J. 1969. Speciation in Amazonian forest birds. Science 165:131137.Google Scholar
Haffer, J. 1993. Time's cycle and time's arrow in the history of Amazonia. Biogeographica 69:1545.Google Scholar
Hershkovitz, P. 1968. Metachromism or the principle of evolutionary change in mammalian tegumentary colors. Evolution 22:556575.CrossRefGoogle ScholarPubMed
Hoffmann, A. J. J. 1975. Climatic atlas of South America. WMO and Unesco, Cartographia, Budapest.Google Scholar
Hoorn, C. 1993. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology 105:267309.CrossRefGoogle Scholar
Hubbell, S. P. & Foster, R. B. 1986. Biology, chance, and the history and structure of tropical rain forest tree communities. Pp. 314329 in Diamond, J. & Case, T. J. (eds.). Community ecology. Harper & Row, New York.Google Scholar
Hueck, K. & Seibert, P. 1972. Vegetation map of South America. Gustav Fischer Verlag, Stuttgart.Google Scholar
Huston, M. 1979. A general hypothesis of species diversity. American Naturalist 113:81101.CrossRefGoogle Scholar
Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist 104:501528.CrossRefGoogle Scholar
Kalliola, R., Linna, A., Puhakka, M. & Räsänen, M. 1993. Mineral nutrients in fluvil sediments from the Peruvian Amazon. Catena 20:333349.CrossRefGoogle Scholar
Legendre, P. & Vaudor, A. 1991. The R-package: multidimensional analysis, spatial analysis. Département de sciences biologiques, Université de Montréal, Montreal, Canada.Google Scholar
Myers, A. A. & Giller, P. S. 1988. Process, pattern and scale in biogeography. Pp. 312 in Myers, A. A. & Giller, P. S. (eds.). Analytical biogeography. Chapman and Hall, London. 578 pp.CrossRefGoogle Scholar
Nelson, B. W., Ferreira, C. A., Da Silva, M. F. & Kawasaki, M. L. 1990. Refugia, endemism centers and collecting density in Brazilian Amazonia. Nature 345:714716.CrossRefGoogle Scholar
Peńaherrera del A., C. 1986. Geografia fisica del Peru. Pp. 1221 in Dourojeanni, M. J. (ed.). Gran Gcografia del Peru: Naturaleza y Hombre. Vol. 1. Manfer-Juan Meja Baca, Barcelona. 323 pp.Google Scholar
Pires, J. M. & Prance, G. T. 1985. Notes on the vegetation types of the Brazilian Amazon. Pp. 109145 in Prance, G. T. & Lovejoy, T. E. (eds.). Key environments: Amazonia. Pergamon Press, Oxford. 442 pp.Google Scholar
Prance, G. T. (ed.). 1982. Biological diversification in the tropics. Columbia University Press, New York. 714 pp.Google Scholar
Prance, G. T. 1989. American tropical forests. Pp. 99132 in Lieth, H. & Werger, M. J. A. (eds.). Ecosystems of the world 14B. Tropical rain forest ecosystems: biogeographical and ecological studies. Elsevier, Amsterdam. 713 pp.CrossRefGoogle Scholar
Pulliam, H. R. 1988. Sources, sinks, and population regulation. American Naturalist 132:652661.CrossRefGoogle Scholar
Ruokolainen, K. & Tuomisto, H. 1993. La vegetación de terrenos no inundables. Pp. 139153 in Kalliola, R., Puhakka, M. & Danjoy, W. (eds.). Amazonia Peruana – vegetación húmeda tropical en el llano subandino. Paut and Onern, Jyväskylä. 265 pp.Google Scholar
Ruokolainen, K., Tuomisto, H., García, M., Ríos, R. & Torres, A. 1994. Comparación florística de doce parcelas en bosque de tierra firme en la Amazonia Peruana. Acta Amazonica 24:3147.CrossRefGoogle Scholar
Räsänen, M., Kalliola, R. & Puhakka, M. 1993. Mapa geoecológico de la selva baja peruana: explicaciones. Pp. 207216 in Kalliola, R., Puhakka, M. & Danjoy, W. (eds.). Amazonia Peruana – vegetación humeda tropical en el llano subandino. Paut and Onern, Jyväskylä. 265 pp.Google Scholar
Salo, J. 1987. Pleistocene forest refuges in the Amazon: evaluation of the biostratigraphical, lithostratigraphical and geomorphological data. Annales Zoologici Fennici 24:203211.Google Scholar
Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M. & Coley, P. D. 1986. River dynamics and the diversity of Amazon lowland forest. Nature 322:254258.CrossRefGoogle Scholar
Smouse, P. E., Long, J. C. & Sokal, R. R. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35:627632.CrossRefGoogle Scholar
Sneath, P. H. A. & Sokal, R. R. 1973. Numerical taxonomy. Freeman, San Francisco. 573 pp.Google Scholar
SYSTAT, Inc. 1992. Systat: Statistics, Version 5.2 Edition. Systat, Inc., Evanston.Google Scholar
Tilman, D. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton. 360 pp.Google Scholar
Tuomisto, H. & Ruokolainen, K. 1994. Distribution of Pteridophyta and Melastomataceae along an edaphic gradient in an Amazonian rain forest. Journal of Vegetation Science 5:2534.CrossRefGoogle Scholar
Tuomisto, H., Ruokolainen, K., Kalliola, R., Linna, A., Danjoy, W. & Rodrigues, Z. 1995. Dissecting Amazonian biodiversity. Science 269:6366.CrossRefGoogle ScholarPubMed
UNESCO. 1980. Mapa de la vegetación de América del Sur. 1:5 000 000. Institut de la carte Internationale du tapis vegetal, Toulouse.Google Scholar
Valencia, R., Balslev, H., & Paz Y Mino, G. 1994. High tree alpha-diversity in Amazonian Ecuador. Biodiversity and Conservation 3:2128.CrossRefGoogle Scholar
Van Steenis, C. G. G. J. 1969. Plant speciation in Malesia, with special reference to the theory of non-adaptive saltatory evolution. Biological Journal of the Linnean Society 1:97133.Google Scholar
Webb, L. J., Tracey, J. G., Williams, W. T. & Lance, G. N. 1967. Studies in the numerical analysis of complex rain-forest communities II. The problem of species-sampling. Journal of Ecology 55:525538.CrossRefGoogle Scholar
Whitmore, T. C. 1975. Tropical rain forests of the Far East. Clarendon Press, Oxford. 282 pp.Google Scholar
Whitmore, T. C., & Prance, G. T. (eds.). 1987. Biogeography and quaternary history in tropical America. Clarendon Press, Oxford. 214 pp.Google Scholar