Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T09:59:43.014Z Has data issue: false hasContentIssue false

Tree growth and age in an ancient Hawaiian wet forest: vegetation dynamics at two spatial scales

Published online by Cambridge University Press:  08 December 2009

Patrick J. Hart*
Affiliation:
Department of Biology, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI, 96720, USA

Abstract:

In this study I document the growth rate and age of trees in an old-growth montane Hawaiian wet forest and use these results to evaluate the cyclic succession model for forest dynamics. I used two methods to estimate the age of trees – the crown-class model and radiocarbon dating. Over 6000 trees belonging to eight species were tagged and measured over 7 y on Hawaii Island. Growth rates for the dominant tree (Metrosideros polymorpha) were relatively low (mean = 1.3 mm y−1) and varied with tree size and crown class. 14C-based age estimates for 27 M. polymorpha trees loosely corroborated estimates based on the crown-class method. The oldest tree dated by 14C had a median age of 647 y BP, placing it among the oldest documented angiosperm trees in the northern hemisphere. 14C dating revealed that the upper canopy may be comprised of three distinct age groups of M. polymorpha trees of similar size, with the median age of each group separated by 200–250 y. The high density of large, very old trees in multiple groups is unusual for a tropical forest and indicates that forest development may occur through gap-phase regeneration at a fine scale and stand-level mortality at a coarser scale.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AKASHI, Y. & MUELLER-DOMBOIS, D. 1995. A landscape perspective of the Hawaiian rain forest dieback. Journal of Vegetation Science 6:449464.CrossRefGoogle Scholar
APLET, G. H. & VITOUSEK, P. M. 1994. An age-elevation matrix analysis of Hawaiian rainforest succession. Journal of Ecology 82:137147.CrossRefGoogle Scholar
APLET, G. H., HUGHES, R. F. & VITOUSEK, P. M. 1997. Ecosystem development on Hawaiian lava flows: biomass and species composition. Journal of Vegetation Science 9:1726.CrossRefGoogle Scholar
ATKINSON, I. A. E. 1970. Successional trends in the coastal and lowland forest of Mauna Loa and Kilauea volcanoes, Hawaii. Pacific Science 24:387400.Google Scholar
BAKER, P. J. 2003. Tree age estimation for the tropics: a test from the Southern Appalachians. Ecological Applications 13:17181732.CrossRefGoogle Scholar
BAKER, P. J., BUNYAVEJCHEWIN, S., OLIVER, C. D. & ASHTON, P. S. 2005. Disturbance history and historical stand dynamics of a seasonal tropical forest in western Thailand. Ecological Monographs 75:317343.CrossRefGoogle Scholar
BROKAW, N. V. L. 1985. Gap-phase regeneration in a tropical forest. Ecology 66:682687.CrossRefGoogle Scholar
BRONK-RAMSEY, C. 1995, Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37:425430.CrossRefGoogle Scholar
BRONK-RAMSEY, C. 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43:355363.CrossRefGoogle Scholar
BURTON, P. J. 1982. The effect of temperature and light on Metrosideros polymorpha seed germination. Pacific Science 36:229240.Google Scholar
BURTON, P. J. & MUELLER-DOMBOIS, D. 1984. Response of Metrosideros polymorpha seedlings to experimental canopy opening. Ecology 65:779791.CrossRefGoogle Scholar
CHAMBERS, J. Q., HIGUCHI, N. & SCHIMEL, J. P. 1998. Ancient trees in Amazonia. Nature 391:135136.CrossRefGoogle Scholar
CONNELL, J. H. & LOWMAN, M. D. 1989. Low-diversity tropical rain forests: some possible mechanisms for their existence. The American Naturalist 134:88119.CrossRefGoogle Scholar
COORAY, R. G. 1974. Stand structure of a montane rain forest on Mauna Loa, Hawaii. Technical Report 44, United States/International Biological Program Island Ecosystems IRP, Department of Botany, University of Hawaii, Honolulu HI, USA.Google Scholar
CREWS, T., KITAYAMA, K., FOWNES, J. H., RILEY, R. H., HERBERT, D. A, MUELLER-DOMBOIS, D. & VITOUSEK, P. M. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across along chronosequence in Hawaii. Ecology 76:14071424.CrossRefGoogle Scholar
DENSLOW, J. S. 1987. Tropical rain forest gaps and tree species diversity. Annual Review of Ecology and Systematics 18:431451.CrossRefGoogle Scholar
DRAKE, D. R. & MUELLER-DOMBOIS, D. 1993. Population development of rain forest trees on a chronosequence of Hawaiian lava flows. Ecology 74:10121019.CrossRefGoogle Scholar
FICHTLER, E., CLARK, D. A. & WORBES, M. 2003. Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica 35:306317.Google Scholar
GAGNE, W. C. & CUDDIHY, L. W. 1990. Vegetation. Pp. 45114 in Wagner, W. L., Herbst, D. H. & Sohmer, S. H. (eds). Manual of the flowering plants of Hawaii. Bernice P. Bishop Museum, Honolulu.Google Scholar
GERRISH, G. & MUELLER-DOMBOIS, D. 1999. Measuring stem growth rates for determining age and cohort analysis of a tropical evergreen tree. Pacific Science 53:418429.Google Scholar
HART, P. J. 2000. Ecological, demographic, and behavioral aspects of variable population densities in the endangered Hawaii Akepa. PhD Dissertation, University of Hawaii at Manoa, Honolulu, Hawaii.Google Scholar
HART, T. B. 1990. Monospecific dominance in tropical rain forests. Trends in Ecology and Evolution 5:611.CrossRefGoogle ScholarPubMed
KITAYAMA, K., SCHUUR, E. A. G., DRAKE, D. R. & MUELLER-DOMBOIS, D. 1997. Fate of a wet montane forest during soil ageing in Hawaii. Journal of Ecology 85:669679.CrossRefGoogle Scholar
KUROKAWA, H., YOSHIDA, T., NAKAMURA, T., LAI, J. & NAKASHIZUKA, T. 2003. The age of tropical rain-forest canopy species, Borneo ironwood (Eusideroxylon zwageri), determined by 14C dating. Journal of Tropical Ecology 19:17.CrossRefGoogle Scholar
LANG, G. E. & KNIGHT, D. H. 1983. Tree growth, mortality, recruitment, and canopy gap formation during a 10-year period in a tropical moist forest. Ecology 64:10751080.CrossRefGoogle Scholar
LIEBERMAN, D., LIEBERMAN, M., HARTSHORN, G. & PERALTA, R. 1985. Growth rates and age-size relationships of tropical wet forest trees in Costa Rica. Journal of Tropical Ecology 1:97109.CrossRefGoogle Scholar
MUELLER-DOMBOIS, D. 1986. Perspectives for an etiology of stand-level dieback. Annual Review of Ecology and Systematics 17:221243.CrossRefGoogle Scholar
MUELLER-DOMBOIS, D. 2006. Long-term rain forest succession and landscape change in Hawaii: the ‘Maui Forest Trouble’ revisited. Journal of Vegetation Science 17:685692.CrossRefGoogle Scholar
REIMER, P. J., BAILLIE, M. G. L., BARD, E., BAYLISS, A., BECK, J. W., BERTRAND, C. J. H., BLACKWELL, P. G., BUCK, C. E., BURR, G. S., CUTLER, K. B., DAMON, P. E., EDWARDS, R. L., FAIRBANKS, R. G., FRIEDRICH, M., GUILDERSON, T. P., HOGG, A. G., HUGHEN, K. A., KROMER, B., MCCORMAC, G., MANNING, S., BRONK-RAMSEY, C., REIMER, R. W., REMMELE, S., SOUTHON, J. R., STUIVER, M., TALAMO, S., TAYLOR, F. W., VAN DER PLICHT, J. & WEYHENMEYER, C. E. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:10291058.Google Scholar
SATO, H. H., IKEDA, W., PAETH, P., SMYTHE, R. & TAKEHIRO, M. 1973. Soil survey of the Island of Hawaii, State of Hawaii. United States Department of Agriculture, Soil Conservation Service, University of Hawaii Agricultural Experiment Station. Honolulu. 115 pp.Google Scholar
SMATHERS, G. A. & MUELLER-DOMBOIS, D. 1974. Invasion and recovery of vegetation after a volcanic eruption in Hawaii. National Park Service Scientific Monograph Series no. 5. National Park Service, Honolulu. 129 pp.Google Scholar
SMITH, D. M. 1986. The practice of silviculture. (Eighth edition). John Wiley and Sons, New York. 527 pp.Google Scholar
SOUTHON, J. R. & SANTOS, G. M. 2004. Ion source development at KCCAMS, University of California, Irvine. Radiocarbon 46:3339.CrossRefGoogle Scholar
STOKES, M. A. & SMILEY, T. L. 1968. An introduction to tree ring dating. University of Chicago Press, Chicago. 73 pp.Google Scholar
STUIVER, M. & POLACH, H. A. 1977. Reporting of 14C Data. Radiocarbon 19:355363.CrossRefGoogle Scholar
STUIVER, M., REIMER, P. J., BARD, E., BECK, J.W., BURR, G. S., HUGHEN, K. A., KROMER, B., MCCORMAC, G., Van Der PLICHT, J. & SPURK, M. 1998. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:10411084.CrossRefGoogle Scholar
VIEIRA, S., TRUMBORE, S., CAMARGO, P. B., SELHORST, D., CHAMBERS, J. Q., HIGUCHI, N. & MARTINELLI, L. A. 2005. Slow growth rates of Amazonian trees: consequences for carbon cycling. Proceedings of the National Academy of Sciences, USA 102:1850218507.CrossRefGoogle ScholarPubMed
WHITMORE, T. C. 1990. An introduction to tropical rain forests. Clarendon Press, Oxford. 282 pp.Google Scholar
WOLFE, E. W. & MORRIS, J. 1996. Geologic map of the Island of Hawaii. USGS Misc. Investigations Series Map i-2524-A. Washington, DC: U.S. Geological Survey.Google Scholar
WORBES, M. 1999. Annual growth rings, rainfall-dependent growth and long term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. Journal of Ecology 87:391403.CrossRefGoogle Scholar
WORBES, M. & JUNK, W. J. 1999. How old are tropical trees? The persistence of a myth. IAWA Journal 20:255260.CrossRefGoogle Scholar
WORBES, M., STASCHEL, R., ROLOFF, A. & JUNK, W. J. 2003. Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. Forest Ecology and Management 173:105123.CrossRefGoogle Scholar
ZIMMERMAN, N., HUGHES, R. F., CORDELL, S., HART, P. J., CHANG, H. K., PEREZ, D., LIKE, R. K. & OSTERTAG, R. 2008. Patterns of primary succession of native and introduced plants in lowland wet forests in Eastern Hawai'i. Biotropica 40:277284.CrossRefGoogle Scholar