Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T18:32:13.327Z Has data issue: false hasContentIssue false

Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis

Published online by Cambridge University Press:  10 July 2009

Julia Allen Jones
Affiliation:
Department of Geography and Environmental Studies Program, University of California, Santa Barbara CA 93106, USA

Abstract

Termites, particularly the mound building, fungus growing Macrotermitinae, reach densities of up to 400 termites m−2 in soils of dry tropical Africa. The influence of Macrotermi tinae in increasing certain soil nutrients in mounds compared to adjacent soils has been documented, but the links between litter harvesting by termites, soil fertility, and global C cycling have not been explored. This study reviews the evidence from soil science, ecology and atmos pheric chemistry and generates hypotheses to explain the role of termites in dry tropical eco systems. It is suggested that termite activity exhaustively partitions litterfall among adjacent com peting colonies, where it is so thoroughly decomposed that little or no organic C is incorporated into the soils. Associated N, P, and cations build up in the mounds, but C apparently is emitted as CO2 and CH4 from the mounds. While not adequate to calculate nutrient fluxes through termites, the data available support the argument that termites contribute significantly to atmospheric fluxes of CO2 and CH4. Moreover, they suggest a coupling of regional soil forming processes and the global C budget.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Allen, J. C. 1985. Soil response to forest clearing in the United States and the tropics: geological and biological factors. Biotropica 17:1527.CrossRefGoogle Scholar
Anderson, J. M. & Coe, M. J. 1974. Composition of elephant dung in an arid tropical environment. Oecologia (Berlin) 14:111125.CrossRefGoogle Scholar
Arshad, M. A. 1981. Physical and chemical properties of termite mounds of two species of Macrotermes (Isoptera: Termitidae) and the surrounding soils of the semiarid savanna of Kenya. Soil Science 132:161174.CrossRefGoogle Scholar
Arshad, M. A. 1982. Influence of the termite Macrotermes michaelseni (Sjöst) on soil fertility and vegetation in a semi-arid savannah ecosystem. Agro-Ecosystems 8:4758.CrossRefGoogle Scholar
Arshad, M. A., Mureria, N. K. & Keya, S. O. 1982. Effect of termite activities on the soil microflora. Pedobiotogia 24:161167.CrossRefGoogle Scholar
Aubreville, A. 1957. Muhulus, termitières fossiles geantes et forêt claire katangiens. Bois et Forêts des Tropiques 51:3339.Google Scholar
Bagine, R. K. N. & Darlington, J. P. E. C. 1987. Preliminary report of new work on lenticular soil mounds on the Embasaki Plains. Unpublished report.Google Scholar
Bartlett, K. A., Crill, P. M., Sebacher, D. I., Harriss, R. C., Wilson, J. O. & Melack, J. M. 1988. Methane flux from the central Amazonian floodplain. Journal of Geophysical Research 93:15711582.CrossRefGoogle Scholar
Basalingappa, S. 1970. Environmental hazards to reproductives of Odontotermes assmuthi (Holm gren). Indian Scientific Congress Association Proceedings 57:409.Google Scholar
Belsky, A. J. 1987. Revegetation of natural and human-caused disturbances in the Serengeti National Park, Tanzania. Vegetatio 70:5160.CrossRefGoogle Scholar
Benemann, J. R. 1973. Nitrogen fixation in termites. Science 181:164165.CrossRefGoogle ScholarPubMed
Blake, D. R. & Rowland, F. S. 1988. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science 239:11291131.CrossRefGoogle ScholarPubMed
Bouillon, A. 1970. Termites of the Ethiopian region. Pp. 154280 in Krishna, K. & Weesner, F. M. (eds). Biology of termites. Volume 2. Academic Press, London.Google Scholar
Bouillon, A. & Kidieri, S. 1964. Repartition des termitières de Bellicositermes bellisosus rex Grasse et Noirot dans l'Ubangi, d'apres les photos aeriènnes. Correlations ecologiques qu'elle révéle. Pp. 373376 in Bouillon, A. (ed.). Etude sur les termites africains. Leopoldville University, Leopoldville (Zaire).Google Scholar
Boyer, P. 1956. Les bases totales dans les matériaux de la termitière de Bellicositermes natalensis (Hav.). Transactions of the 6th International Congress of Soil Science C: 105110.Google Scholar
Brown, S. & Lugo, A. 1981. The role of terrestrial biota in the global CO2, cycle. Proceedings of a Symposium: A review of the carbon dioxide problem. American Chemical Society Division of Petro leum Chemistry 26(4):10191025.Google Scholar
Burtt, R. D. 1942. Some East African vegetation communities. Journal of Ecology 30:65146.CrossRefGoogle Scholar
Buxton, R. D. 1981. Termites and the turnover of dead wood in an arid tropical environment. Oecologia (Berlin) 51:379384.CrossRefGoogle Scholar
Coleman, D. C., Reid, C. P. P. & Cole, C. V. 1983. Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research 13:155.CrossRefGoogle Scholar
Collins, M. 1982. The importance of being a Bugga-Bug. New Scientist 94:834837.Google Scholar
Collins, N. M. 1980a. Inhabitation of epigeal termite (Isoptera) nests by secondary termites in Cameroun rain forest. Sociobiology 5:4754.Google Scholar
Collins, N. M. 1980b. The effect of logging on termite (Isoptera) diversity and decomposition proces ses in lowland dipterocarp forests. Pp. 113121 in Furtado, J. I. (ed.). Tropical ecology and develop ment. International Society of Tropical Ecology, Kuala Lumpur.Google Scholar
Collins, N. M. 1981. The role of termites in the decomposition of wood and leaf litter in the southern Guinea savanna of Nigeria. Oecologia (Berlin) 51:389399.CrossRefGoogle ScholarPubMed
Collins, N. M. & Wood, T. G. 1984. Termites and atmospheric gas production. Science 224:8485.CrossRefGoogle ScholarPubMed
Darlington, J. P. E. C. 1982. The underground passages and storage pits used in foraging by a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. Journal of Zoology (London) 198:237247.CrossRefGoogle Scholar
Darlington, J. P. E. G. 1984a. A method for sampling the populations of large termite nests. Annals of Applied Biology 104:427436.CrossRefGoogle Scholar
Darlington, J. P. E. C. 1984b. Two types of mound built by the termite Macrotermes subhyalinus in Kenya. Insect Science Applications 5:481492.Google Scholar
Darlington, J. P. E. C. 1985a. Lenticular soil mounds in the Kenya highlands. Oecologia (Berlin) 66:116121.CrossRefGoogle ScholarPubMed
Darlington, J. P. E. C. 1985b. The structure of mature mounds of the termite Macrotermes michaelseni in Kenya. Insect Science Applications 6:149156.CrossRefGoogle Scholar
Darlington, J. P. E. C. & Dransfield, R. D. 1987. Size relationships between mound dimensions and nest population parameters in the termite. Macrotermes michaelseni in Kenya. Insectes Sociaux 34:.Google Scholar
Elkins, N. Z., Sabol, G. V., Ward, T. J. & Whitford, W. G. 1986. The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia (Berlin) 68:521528.CrossRefGoogle ScholarPubMed
Elkins, N. Z., Steinberger, Y. & Whitford, W. G. 1982. Factors affecting the applicability of the AET model for decomposition in arid environments. Ecology 63:579580.CrossRefGoogle Scholar
Elamin, E. M., Ishag, H. M. & Burhan, H. O. 1983. Important factors affecting the yield of ground nuts (Arachis hypogea) in the Sudan. Zeitschrift Angewissen Zoologie 70:3956.Google Scholar
Fanshawe, D. B. 1968. The vegetation of Zambian termitaria. Kirkia 6:169179.Google Scholar
Fraser, P. J., Rasmussen, R. A., Creffield, J. W., French, J. R. & Khalil, M. A. K. 1986. Termites and global methane – another assessment. Journal of Atmospheric Chemistry 4:295310.CrossRefGoogle Scholar
Glover, P. E., Trump, E. C. & Wateridge, L. E. D. 1964. Termitaria and vegetation patterns on the Loita plains of Kenya. Journal of Ecology 52:365377.CrossRefGoogle Scholar
Goffinet, G. 1973. Contribution a l'étude de l'écosystème forêt claire (miombo). Note 11. Etude comparative des effectifs de quelques groupes arthropodiens du sol intercalique de quatre biotopes Katangais (Zaire). Annuaire Universitaire Abidjan Série E 6:251256.Google Scholar
Gutierrez, J. R. & Whitford, W. G. 1987. Chihuahuan desert annuals: Importance of water and nitrogen. Ecology 68:20322045.CrossRefGoogle ScholarPubMed
Harriss, R. C., Sebacher, D. I. & Day, F. P. 1982. Methane flux in the Great Dismal Swamp. Nature 297:673.CrossRefGoogle Scholar
Hesse, P. R. 1955. A chemical and physical study of the soils of termite mounds in East Africa. Journal of Ecology 43:449461.CrossRefGoogle Scholar
Holt, J. 1987. Carbon mineralization in semi arid northeastern Australia: the role of termites. Journal of Tropical Ecology 3:255263.CrossRefGoogle Scholar
Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R. & Woodwell, G. M. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecological Monographs 53:235262.CrossRefGoogle Scholar
Howard, J. A. C. 1959. The classification of woodland in western Tanganyika for type-mapping from aerial photographs. Commonwealth Foresty Review 38:348364.Google Scholar
Johnson, K. A. & Whitford, W. G. 1975. Foraging ecology and relative importance of subterranean termites in Chihuahuan desert ecosystems. Environmental Entomology 4:6670.CrossRefGoogle Scholar
Johnson, R. A. & Wood, T. G. 1980. Termites of the arid zones of Africa and the Arabian Peninsula. Sociobiohgy 5:279293.Google Scholar
Jones, J. A. 1989a. Some soils of semi-arid central Tanzania: Morphology, classification and management. MS. submitted.Google Scholar
Jones, J. A. 1989b. Environmental influences on soil chemistry in central semi-arid Tanzania. Soil Science Society of America Journal 53:17481758.CrossRefGoogle Scholar
Keller, M., Goreau, T. J., Wofsy, S. C., Kaplan, W. A. & McElroy, M. B. 1983. Production of nitrous oxide and consumption of methane by forest soils. Geophysical Research Letters 10:11561159.CrossRefGoogle Scholar
Keller, M., Kaplan, W. A. & Wofsy, S. C. 1986. Emissions of N20, CH4, and CO2, from tropical forest soils. Journal of Geophysical Research 91:11, 791–11, 802.CrossRefGoogle Scholar
Keya, S. O., Mureria, K. & Arshad, M. A. 1982. Population dynamics of soil microorganisms in relation to proximity of termite mounds in Kenya. Journal of Arid Environments 5:353359.CrossRefGoogle Scholar
Khalil, M. A. K. & Rasmussen, R. A. 1983. Reply – Termites and methane. Nature 302:355.Google Scholar
Krishna, K. & Weesner, F. M. 1969. Biology of termites. Volume 1. Academic Press, London. 598 pp.Google Scholar
Krishna, K. & Weesner, F. M. 1970. Biology of termites. Volume 2. Academic Press, London. 643 pp.Google Scholar
Lafage, J. P. & Nutting, W. L. 1978. Nutrient dynamics of termites. Pp. 127153 in Brian, M. V. (ed.). Production ecology of ants and termites. Cambridge University Press, Cambridge.Google Scholar
Lal, R. 1987. Tropical ecology and physical edaphology. John Wiley and Sons, New York. 723 pp.Google Scholar
Lee, J. J. & Inman, D. L. 1975. The ecological role of consumers: An aggregated systems view. Ecology 56:14551458.CrossRefGoogle Scholar
Lee, K. E. 1982. The influence of earthworms and termites on soil nitrogen cycling. Pp. 3548 in Lebrun, P., Andre, H. M., De Medts, A., Gregoire-Wibo, C. & Wauthy, G. (eds). New trends in soil biology. Proceedings of the VII International Colloquium of Soil Zoology. Dieu-Brichart, Louvain-la-Neuve, Belgium.Google Scholar
Lee, K. E. & Butler, J. H. A. 1977. Termites, soil organic matter decomposition and nutrient cycling. Ecological Bulletin 25:544548.Google Scholar
Lee, K. E. & Wood, T. G. 1971. Termites and soils. Academic Press, London. 251 pp.Google Scholar
Lepage, M. G. 1976. Foraging and feeding of Macrotermes subhyalinus. Annual Report ICIPE 4:4954.Google Scholar
Lepage, M. G. 1978. The impact of foraging populations of the termite Macrotermes subhyalinus on a semi-arid ecosystem (Kajiado, Kenya). Final Report, International Center of Insect Physiology and Ecology (ICIPE), Nairobi.Google Scholar
Lepage, M. G. 1979. La récolte en strate herbacée de Macrotermes aff. subhyalinus (Isoptera: Macrotermitinae) dans un écosystème semi-aride (Kajiado, Kenya). Comptes Rendus University International Society Study Insects (IUSSI) Lausanne 1979:145151.Google Scholar
Lepage, M. G. 1981a. Etude de la prédation de Megaponera foetens (F.) sur les populations récoltantes de Macrotermitinae dans un écosystème semi-aride (Kajiado, Kenya). Insectes Sociaux 28:247262.CrossRefGoogle Scholar
Lepage, M. G. 1981b. L'impacte des populations récoltantes de Macrotermes michaelseni (Sjostedt) (Isoptera: Macrotermitinae) dans un écosystème semi-aride (Kajiado, Kenya). II. Nourriture récoltée, comparaison avec les grands herbivores. Insectes Sociaux 28:309319.CrossRefGoogle Scholar
Lepage, M. G. 1981c. L'impacte des populations récoltantes de Macrotermes michaelseni (Sjostedt) (Isoptera: Macrotermitinae) dans un écosystème semi-aride (Kajiado, Kenya). I. L'activité de récolte et son determinisme. Insectes Sociaux 28:297308.CrossRefGoogle Scholar
Mackay, W. P., Blizzard, J. H., Miller, J. J. & Whitford, W. G. 1985. Analysis of above-ground gallery construction by the subterranean termite Gnathamitermes tubiformans (Isoptera: Termitidae). Environmental Entomology 14:470474.CrossRefGoogle Scholar
Mackay, W. P., Fisher, F. M., Silva, S. & Whitford, W. G. 1987a. The effects of nitrogen, water and sulfur amendments on surface litter decomposition in the Chihuahuan desert. Journal of Arid Environments 12:223232.CrossRefGoogle Scholar
Mackay, W. P., Silva, S., Lightfoot, D. C., Pagani, M. I. & Whitford, W. G. 1986. Effect of increased soil moisture and reduced soil temperature on a desert soil arthropod community. American Midland Naturalist 116:4556.CrossRefGoogle Scholar
Mackay, W. P., Silva, S., Loring, S. J. & Whitford, W. G. 1987b. The role of subterranean termites in the decomposition of above ground creosotebush litter. Sociobiology 13:235239.Google Scholar
Mackay, W. P., Zak, J. C., Silva, S.. & Whitford, W. G. 1987c. Gnathamitermes tubiformans (Isoptera: Termitidae), especie clave en el desierto Chihuahuense. Folia Entomological Mexicana 73:2946.Google Scholar
Malaisse, F., Freson, R., Goffinet, G. & Malaisse-Mousset, M. 1975. Litterfall and litter breakdown in miombo, Pp. 137152 in Golley, F. & Medina, E. (eds). Tropical ecological systems. Springer-Verlag, New York.CrossRefGoogle Scholar
Malaisse, F. P. 1978. The miombo ecosystem. Pp. 589606 in Tropical forest ecosystems: A state of knowledge report. UNESCO, Paris.Google Scholar
Meiklejohn, J. 1965. Microbiological studies on large termite mounds. Rhodesia Zambia Malawi Agriculture Journal of Research 3:6779.Google Scholar
Mermut, A. R., Arshad, M. A. & J.St. Arnaud, R. St. Arnaud, R. 1984. Micropedological study of termite mounds of three species of Macrotermes in Kenya. Soil Science Society of America Journal 48:613620.CrossRefGoogle Scholar
Mnzava, E. M. 1980. Village afforestation: Lessons of experience in Tanzania. Fao/Swedish Funds-in-Trust Report Tf/Inf 271 (Swe). FAO, Rome. 56 pp.Google Scholar
Nair, K. S. S. & Varma, R. V. 1985. Some ecological aspects of the termite problem in young eucalpyt plantations in Kerala, India. Forest Ecology and Management 12:287303.CrossRefGoogle Scholar
Noirot, C. 1970. The nests of termites. Pp. 73125 in Krishna, K. & Weesner, F. M. (eds). Biology of termites. Volume 2. Academic Press, London.Google Scholar
Noirot, C. & Noirot-Timothee, C. 1969. The digestive system. Pp. 4988 in Krishna, K. & Weesner, F. M. (eds). Biology of termites. Volume 1. Academic Press, London.CrossRefGoogle Scholar
Nyamapfene, K. W. 1986. The use of termite mounds in Zimbabwe peasant agriculture. Tropical Agriculture 63:191192, 246.Google Scholar
Paine, R. T. 1969. A note on trophic complexity and community stability. American Naturalist 103:9293.CrossRefGoogle Scholar
Parker, L. W., Fowler, H. G., Ettershank, G. &: Whitford, W. G. 1982. The effects of subterranean termite removal on desert soil nitrogen and ephemeral flora. Journal of Arid Environments 5:5359.CrossRefGoogle Scholar
Parkinson, D. 1982. Functional relationships between soil organisms. Pp. 153165 in Lebrun, P., Andre, H. M., De Medts, A., Gregoire-Wibo, C. & Wauthy, G. (eds). New trends in soil biology. Pro ceedings of the VII International Colloquium of Soil Zoology. Dieu-Brichart.Google Scholar
Parry, M. S. 1959. Control of termites in Eucalyptus plantations. Empire Forestry Review 38:287292.Google Scholar
Piearce, G. D. 1981. Zambian mushrooms – customs and folklore. Transactions of the British Myo-cological Society 139142.Google Scholar
Pomeroy, D. E. 1973. Some effects of mound building termites on the soils of a semi-arid area of Kenya. Journal of Soil Science 34:555570.CrossRefGoogle Scholar
Pomeroy, D. E. 1976. Some effects of mound building termites on soils in Uganda. Journal of Soil Science 27:377394.CrossRefGoogle Scholar
Pomeroy, D. E. 1977. The distribution and abundance of large termite mounds in Uganda. Journal of Applied Ecology 14:465475.CrossRefGoogle Scholar
Pomeroy, D. E. 1978. The abundance of large termite mounds in Uganda in relation to their environment. Journal of Applied Ecology 15:5163.CrossRefGoogle Scholar
Pomeroy, D. E. 1983. Distribution and abundance of large termite mounds in a semi-arid area of southern Kenya. Kenya Journal of Science and Technology B4:7787.Google Scholar
Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. 1982. Soil carbon pools and world life zones. Nature 298:156159.CrossRefGoogle Scholar
Prestwich, G. D., Bentley, B. L. & Carpenter, E. J. 1980. Nitrogen sources for neotropical Nasute termites: Fixation and selective foraging. Oecologia (Berlin) 46:397401.CrossRefGoogle ScholarPubMed
Pomeroy, D. E. 1976. Some effects of mound building termites on soils in Uganda. Journal of Soil Science 27:377394.CrossRefGoogle Scholar
Pomeroy, D. E. 1977. The distribution and abundance of large termite mounds in Uganda. Journal of Applied Ecology 14:465475.CrossRefGoogle Scholar
Pomeroy, D. E. 1978. The abundance of large termite mounds in Uganda in relation to their environment. Journal of Applied Ecology 15:5163.CrossRefGoogle Scholar
Pomeroy, D. E. 1983. Distribution and abundance of large termite mounds in a semi-arid area of southern Kenya. Kenya Journal of Science and Technology B4:7787.Google Scholar
Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. 1982. Soil carbon pools and world life zones. Nature 298:156159.CrossRefGoogle Scholar
Prestwich, G. D., Bentley, B. L. & Carpenter, E. J. 1980. Nitrogen sources for neotropical Nasute termites: Fixation and selective foraging. Oecologia (Berlin) 46:397401.CrossRefGoogle ScholarPubMed
Rasmussen, R. A. & Khalil, M. A. K. 1983. Global production of methane by termites. Nature 301:700702.CrossRefGoogle Scholar
Rasmussen, R. A. & Khalil, M. A. K. 1986. Atmospheric trace gases: trends and distributions over the past decade. Science 232:16231634.CrossRefGoogle Scholar
Ruyooka, D. 1980. Food handling and fungus comb turnover in laboratory and field Macrotermes michaelseni colonies. Annual Report ICIPE 7:.Google Scholar
Sanchez, P. A. 1976. Properties and management of soils in the tropics. John Wiley & Sons, New York. 618 pp.Google Scholar
Sands, W. A. 1962. The evaluation of insecticides as soil and mound poisons against termites in agriculture and forestry in West Africa. Bulletin of Entomological Research 53:179192.CrossRefGoogle Scholar
Sands, W. A. 1965. Termite distribution in man-modified habitats in West Africa, with special references to species segregation in the genus Trinervitermes (Isoptera, Termitidae, Nasutitermitinae). Journal of Animal Ecology 34:557571.CrossRefGoogle Scholar
Sands, W. A. 1969. The association of termites and fungi. Pp. 495524 in Krishna, K. & Weesner, F. M. (eds). Biology of termites. Volume 1. Academic Press, London.CrossRefGoogle Scholar
Sands, W. A. 1972. Problems in attempting to sample tropical subterranean termite populations. EkologiaPolska (Krakow) 20:2331.Google Scholar
Sands, W. A. 1973. Termites as pests of tropical food crops. Pest Articles and News Summaries (London) 19:167177.Google Scholar
Schlesinger, W. H. 1977. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics 8:5181.CrossRefGoogle Scholar
Seiler, W., Conrad, R. & Scharffe, D. 1984. Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. Journal of Atmospheric Chemistry 1:171&186.CrossRefGoogle Scholar
Sheppard, J. C., Westberg, H., Hopper, J. F. & Ganesan, K. 1982. Inventory of global methane sources and their production rates. Journal of Geophysical Research 87:13051312.CrossRefGoogle Scholar
Singh, U. R. & Singh, S. J. 1981a. Temperature and humidity relations of termites. Pedobiologia 21:211216.CrossRefGoogle Scholar
Singh, U. R. & Singh, S. J. 1981b. Population structure and mound architecture of the termites of a tropical deciduous forest of Varanasi; India. Pedobiologia 22:213223.CrossRefGoogle Scholar
Steppe, W. 1976. Invertebrate predation on termites of the African savanna. Insectes Sociaux 17:205218.Google Scholar
Tate, R. L. III 1987. Soil organic matter: ecological and biological effects. Wiley, J., New York. 291 pp.Google Scholar
Trapnell, C. G., Friend, M. T., Chamberlain, G. T. & Birch, H. F. 1976. The effects of fire and termites on a Zambian woodland soil. Journal of Ecology 64:577588.CrossRefGoogle Scholar
Tyler, S. C. 1986. Stable carbon isotope ratios in atmospheric methane and some of its sources. Journal of Geophysical Research 91:13, 232–13, 238.CrossRefGoogle Scholar
Usher, M. B. 1975. Studies on a wood-feeding termite community in Ghana, West Africa. Biotropica 7:217233.CrossRefGoogle Scholar
Vogel, S. 1978. Organisms that capture currents. Scientific American 239:108117.CrossRefGoogle Scholar
Vogel, S. & Bretz, W. L. 1972. Interfacial organisms: passive ventilation in the velocity gradients near surfaces. Science 175:210211.CrossRefGoogle ScholarPubMed
Walker, B. H. 1981. Is succession a viable concept in African savanna ecosystems? Pp. 431447 in West, D. C. et al. (ed.). Forest succession: concepts and application. Springer-Verlag, New York.CrossRefGoogle Scholar
Wanyonyi, K., Darlington, J. P. E. C. & Bagine, R. K. N. 1984. Check-list of the species of termites (Isoptera) recorded from East Africa. Journal of the East African Natural History Society National Museum 181:112.Google Scholar
Watson, J. P. 1961. Some observations on soil horizons and insect activity in granite soils. Proceedings of the 1st Federated Science Congress of Rhodesia and Nyasaland 271276.Google Scholar
Watson, J. P. 1962. The soil below a termite mound. Journal of Soil Science 13:4651.CrossRefGoogle Scholar
Watson, J. P. 1967. A termite mound in an Iron Age burial ground in Rhodesia. Journal of Ecology 55:663669.CrossRefGoogle Scholar
Watson, J. P. 1977. The use of mounds of the termite Macrotermes falciger as a soil amendment. Journal of Soil Science 28:664764.CrossRefGoogle Scholar
Weir, J. S. 1973. Air flow, evaporation, and mineral accumulation in mounds of Macrotermes sub-hyalinus (Rambur). Journal of Animal Ecology 42:509520.CrossRefGoogle Scholar
Whitford, W. G., Meentemeyer, V., Seastedt, T. R., Cromack, K., Crossley, D. A., Santos, P., Todd, R. L. & Waide, J. B. 1981. Exceptions to the AET model: deserts and clearcut forests. Ecology 62:275277.CrossRefGoogle Scholar
Whitford, W. G., Steinberger, Y. & Ettershank, G. 1982. Contributions of subterranean termites to the ‘economy’ of Chihuahuan desert ecosystems. Oecologia (Berlin) 55:298302.CrossRefGoogle Scholar
Whitford, W. G., Stinnett, K. & Anderson, J. 1988. Decomposition of roots in a Chihuahuan desert ecosystem. Oecologia (Berlin) 75:811.CrossRefGoogle Scholar
Wood, T. G. 1978a. Food and feeding habits of termites. Pp. 5580 in Brian, M. V. (ed.). Production ecology of ants and termites. Cambridge University Press, Cambridge.Google Scholar
Wood, T. G. 1978b. The role of termites (Isoptera) in decomposition processes. Pp. 145161 in Anderson, J. M. & Macfayden, A. A. (eds). The role of terrestrial and aquatic organisms in decomposition processes. Oxford, Blackwell Scientific.Google Scholar
Wood, T. G., Johnson, R. A. & Ohiagu, C. E. 1977. Populations of termites (Isoptera) in natural and agricultural ecosystems in southern Guinea savanna near Mokwa, Nigeria. Geo-Eco-Trop 1:139148.Google Scholar
Wood, T. G. & Sands, W. A. 1978. The role of termites in ecosystems. Pp. 245292 in Brian, M. V. (ed.). Production ecology of ants and termites. Cambridge University Press, Cambridge.Google Scholar
Young, A. 1976. Tropical soils and soil survey. Cambridge Geographical studies, 9. Cambridge University Press, London. 468 pp.Google Scholar
Zimmerman, P. R. & Darlington, J. P. E. C. 1987. Methane and other metabolic gases produced by termites. Proceedings of the IUSSI 10:637.Google Scholar
Zimmerman, P. R., Greenberg, J. P., Wandiga, S. O. & Crutzen, P. J. 1982. Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218:563565.CrossRefGoogle ScholarPubMed
Zimmerman, P. R. & Greenberg, J. P. 1983. Termites and methane. Nature 302:354355.CrossRefGoogle Scholar
Zimmerman, P. R., Greenberg, J. P. & Darlington, J. P. E. C. 1984. Reply – termites and atmospheric gas production. Science 224:8586.CrossRefGoogle Scholar
Zonnewald, I. S., De Leeuw, P. N. & Sombroek, W. G. 1971. An ecological interpretation of aerial photographs of a savanna region of northern Nigeria; Publications of the International Institute for Aerial Survey in Earth Sciences. (Enschede) B63:141.Google Scholar