Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T17:50:40.188Z Has data issue: false hasContentIssue false

The successional pathway of the tree community and how it shapes the fruit-feeding butterfly community in an Afrotropical forest

Published online by Cambridge University Press:  20 December 2016

Anu Valtonen*
Affiliation:
Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland Center for Ecological Research, Kyoto University, Hirano 2, Otsu, Shiga 520–2113, Japan
Geoffrey M. Malinga
Affiliation:
Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland Department of Biology, Gulu University, P.O. Box 166, Gulu, Uganda
Margaret Nyafwono
Affiliation:
Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland Department of Environment and Natural Resources Management, Gulu University, P.O. Box 166, Gulu, Uganda
Philip Nyeko
Affiliation:
Department of Forestry, Biodiversity and Tourism, Makerere University, P.O. Box 7062, Kampala, Uganda
Arthur Owiny
Affiliation:
Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
Heikki Roininen
Affiliation:
Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
*
*Corresponding author. Email: [email protected]

Abstract:

The relative importance of different bottom-up-mediated effects in shaping insect communities in tropical secondary forests are poorly understood. Here, we explore the roles of vegetation structure, forest age, local topography (valley vs. hill top) and soil variables in predicting fruit-feeding butterfly and tree community composition, and tree community composition in predicting fruit-feeding butterfly community composition, in different-aged naturally regenerating and primary forests of Kibale National Park, Uganda. We also examine which variables are best predictors of fruit-feeding butterfly species richness or diversity. Butterflies (88 species) were sampled with a banana-baited trap and trees (98 taxa) with a 40 × 20-m sampling plot at 80 sampling sites. The environmental variables explained 31% of the variation in the tree community composition, the best predictors being local topography, forest age and cover of Acanthus pubescens (a shrub possibly arresting succession). The fruit-feeding butterfly community composition was better predicted by tree community composition (explaining 10% of the variation) rather than vegetation structure, local topography or soil factors. Environmental variables and tree species richness (or diversity) were poor predictors of butterfly species richness (or diversity). Our results emphasize the importance of tree community to recovery of herbivorous insect communities in tropical secondary forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADUSE-POKU, K., LEES, D. C., BRATTSTRÖM, O., KODANDARAMAIAH, U., COLLINS, S. C., WAHLBERG, N. & BRAKEFIELD, P. M. 2016. Molecular phylogeny and generic-level taxonomy of the widespread palaeotropical ‘Heteropsis clade’ (Nymphalidae: Satyrinae: Mycalesina). Systematic Entomology 41:717731.Google Scholar
ANDERSON, D. R. 2008. A model based inference in the life sciences: a primer on evidence. Springer, New York. 184 pp.CrossRefGoogle Scholar
AXMACHER, J. C., TÜNTE, H., SCHRUMPF, M., MÜLLER-HOHENSTEIN, K., LYARUU, H. V. M. & FIEDLER, K. 2004. Diverging diversity patterns of vascular plants and geometrid moths during forest regeneration on Mt Kilimanjaro, Tanzania. Journal of Biogeography 31:895904.Google Scholar
BONEBRAKE, T. C., PONISIO, L. C., BOGGS, C. L. & EHRLICH, P. R. 2010. More than just indicators: a review of tropical butterfly ecology and conservation. Biological Conservation 143:18311841.Google Scholar
CHAPMAN, C. A. & CHAPMAN, L. J. 1999. Forest restoration in abandoned agricultural land: a case study from East Africa. Conservation Biology 13:13011311.Google Scholar
CHAPMAN, C. A. & LAMBERT, J. E. 2000. Habitat alteration and the conservation of African primates: a case study of Kibale National Park, Uganda. American Journal of Primatology 50:169186.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
CHAPMAN, C. A., CHAPMAN, L. J., KAUFMAN, L. & ZANNE, A. E. 1999. Potential causes of arrested succession in Kibale National Park, Uganda: growth and mortality of seedlings. African Journal of Ecology 37:8192.Google Scholar
CHAPMAN, C. A., CHAPMAN, L. J., STRUHSAKER, T. T., ZANNE, A. E., CLARK, C. J. & POULSEN, J. R. 2005. A long-term evaluation of fruiting phenology: importance of climate change. Journal of Tropical Ecology 21:3145.CrossRefGoogle Scholar
CHAZDON, R. L. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics 6:5171.Google Scholar
CHAZDON, R. L. 2008. Chance and determinism in tropical forest succession. Pp. 384408 in Carson, W. P. & Schnitzer, S. A. (eds). Tropical forest community ecology. Wiley-Blackwell, Chichester.Google Scholar
CLARKE, K. R. & GORLEY, R. N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth. 190 pp.Google Scholar
DUCLOS, V., BOUDREAU, S. & CHAPMAN, C. A. 2013. Shrub cover influence on seedling growth and survival following logging of a tropical forest. Biotropica 45:419426.Google Scholar
DUNN, R. R. 2004. Recovery of faunal communities during tropical forest regeneration. Conservation Biology 18:302309.CrossRefGoogle Scholar
DYER, L. A., SINGER, M. S., LILL, J. T., STIREMAN, J. O., GENTRY, G. L., MARQUIS, R. J., RICKLEFS, R. E., GREENEY, H. F., WAGNER, D. L., MORAIS, H. C., DINIZ, I. R., KURSAR, T. A. & COLEY, P. D. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696700.Google Scholar
FINEGAN, B. 1996. Pattern and process in neotropical secondary rain forests: the first 100 years of succession. Trends in Ecology and Evolution 11:119124.Google Scholar
FORISTER, M. L., NOVOTNY, V., PANORSKA, A. K., BAJE, L., BASSET, Y., BUTTERILL, P. T., CIZEK, L., COLEY, P. D., DEM, F., DINIZ, I. R., DROZD, P., FOX, M., GLASSMIRE, A. E., HAZEN, R., HRCEK, J., JAHNER, J. P., KAMAN, O., KOZUBOWSKI, T. J., KURSAR, T. A., LEWIS, O. T., LILL, J., MARQUIS, R. J., MILLER, S. E., MORAIS, H. C., MURAKAMI, M., NICKEL, H., PARDIKES, N. A., RICKLEFS, R. E., SINGER, M. S., SMILANICH, A. M., STIREMAN, J. O., VILLAMARIN-CORTEZ, S., VODKA, S., VOLF, M., WAGNER, D. L., WALLA, T., WEIBLEN, G. D. & DYER, L. A. 2015. The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences USA 112:442447.Google Scholar
GHAZOUL, J. & SHEIL, D. 2010. Tropical rain forest ecology, diversity, and conservation. Oxford University Press, New York. 516 pp.Google Scholar
GIBSON, L., LEE, T. M., KOH, L. P., BROOK, B. W., GARDNER, T. A., BARLOW, J., PERES, C. A., BRADSHAW, C. J. A., LAURANCE, W. F., LOVEJOY, T. E. & SODHI, N. S. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378381.Google Scholar
GIORIA, M., BACARO, G. & FEEHAN, J. 2011. Evaluating and interpreting cross-taxon congruence: potential pitfalls and solutions. Acta Oecologica 37:187194.Google Scholar
GUARIGUATA, M. R. & OSTERTAG, R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148:185206.Google Scholar
JENNINGS, S. B., BROWN, N. D. & SHEIL, D. 1999. Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry 72:5973.Google Scholar
LAWES, M. J. & CHAPMAN, C. A. 2006. Does the herb Acanthus pubescens and/or elephants suppress tree regeneration in disturbed Afrotropical forest? Forest Ecology and Management 221:278284.Google Scholar
LAWTON, J. H. 1983. Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology 28:2339.CrossRefGoogle Scholar
LEPŠ, J., SPITZER, K. & JAROŠ, J. 1998. Food plants, species composition and variability of the moth community in undisturbed forest. Oikos 81:538548.Google Scholar
LEWINSOHN, T. M., NOVOTNY, V. & BASSET, Y. 2005. Insects on plants: diversity of herbivore assemblages revisited. Annual Review of Ecology, Evolution, and Systematics 36:597620.CrossRefGoogle Scholar
MAJALIWA, J. G. M., TWONGYIRWE, R., NYENJE, R., OLUKA, M., ONGOM, B., SIRIKE, J., MFITUMUKIZA, D., AZANGA, E., NATUMANYA, R., MWERERA, R. & BARASA, B. 2010. The effect of land cover change on soil properties around Kibale National Park in South Western Uganda. Applied and Environmental Soil Science 2010:185689.Google Scholar
MAURER, B. A. & MCGILL, B. J. 2011. Measurement of species diversity. Pp. 5565 in Magurran, A. E. & McGill, B. J. (eds). Biological diversity. Frontiers in measurement and assessment. Oxford University Press, Oxford.Google Scholar
MOLLEMAN, F. 2012. Butterflies of Uganda: Kibale forest. Tourguide Publications, Kampala. 65 pp.Google Scholar
MOLLEMAN, F., VAN ALPHEN, M. E., BRAKEFIELD, P. M. & ZWAAN, B. J. 2005. Preferences and food quality of fruit-feeding butterflies in Kibale forest, Uganda. Biotropica 37:657663.Google Scholar
MOLLEMAN, F., KOP, A., BRAKEFIELD, P. M., DE VRIES, P. J. & ZWAAN, B. J. 2006. Vertical and temporal patterns of biodiversity of fruit-feeding butterflies in a tropical forest in Uganda. Biodiversity and Conservation 15:107121.CrossRefGoogle Scholar
MÜLLER, J., STADLER, J., JARZABEK-MÜLLER, A., HACKER, H., TER BRAAK, C. & BRANDL, R. 2011. The predictability of phytophagous insect communities: host specialists as habitat specialists. PLoS ONE 6:e25986.Google Scholar
NOVOTNY, V. & BASSET, Y. 2005. Host specificity of inset herbivores in tropical forests. Proceedings of the Royal Society of London B 272:10831090.Google Scholar
NYAFWONO, M., VALTONEN, A., NYEKO, P. & ROININEN, H. 2014a. Butterfly community composition across a successional gradient in a human-disturbed Afro-tropical rain forest. Biotropica 46:210218.Google Scholar
NYAFWONO, M., VALTONEN, A., NYEKO, P. & ROININEN, H. 2014b. Fruit-feeding butterfly communities as indicators of forest restoration in an Afro-tropical rainforest. Biological Conservation 174:7583.Google Scholar
NYAFWONO, M., VALTONEN, A., NYEKO, P., OWINY, A. & ROININEN, H. 2015. Tree community composition and vegetation structure predict butterfly community recovery in a restored Afrotropical rain forest. Biodiversity and Conservation 24:14731485.Google Scholar
OWINY, A. A., VALTONEN, A., NYEKO, P., MALINGA, G. M. & ROININEN, H. 2016. Tree communities of different aged logged areas in an Afrotropical rainforest. African Journal of Ecology 54:207216.Google Scholar
PINOTTI, B. T., PAGOTTO, C. P. & PARDINI, R. 2012. Habitat structure and food resources for wildlife across successional stages in a tropical forest. Forest Ecology and Management 283:119127.Google Scholar
SCHAFFERS, A. P., RAEMAKERS, I. P., SÝKORA, K. V. & TER BRAAK, C. J. F. 2008. Arthropod assemblages are best predicted by plant species composition. Ecology 89:782794.Google Scholar
STRUHSAKER, T. T. 1997. Ecology of an African rain forest. University Press of Florida, Gainesville. 456 pp.Google Scholar
TER BRAAK, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:11671179.Google Scholar
TER BRAAK, C. J. F. & SCHAFFERS, A. P. 2004. Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology 85:834846.Google Scholar
TER BRAAK, C. J. F., & ŠMILAUER, P. 2012. Canoco reference manual and user's guide: software for ordination (version 5.0). Microcomputer Power, Ithaca. 496 pp.Google Scholar
VAN DER VOET, H. 1994. Comparing the predictive accuracy of models using a simple randomization test. Chemometrics and Intelligent Laboratory Systems 25:313323.Google Scholar
WARTON, D. I. & HUI, F. K. C. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:310.Google Scholar
WRIGHT, S. J. & MULLER-LANDAU, H. C. 2006. The future of tropical forest species. Biotropica 38:287301.Google Scholar
YAMAMOTO, N., YOKOYAMA, J. & KAWATA, M. 2007. Relative resource abundance explains butterfly biodiversity in island communities. Proceedings of the National Academy of Sciences USA 104:1052410529.Google Scholar