Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T02:34:11.678Z Has data issue: false hasContentIssue false

Successional age and forest structure in a Costa Rican upper montane Quercus forest

Published online by Cambridge University Press:  10 July 2009

Maarten Kappelle
Affiliation:
Hugo de Vries Laboratory, Department of Biology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands, email: [email protected]
Thorwald Geuze
Affiliation:
International Agricultural College Larenstein, P.O. Box 9001, 6880 GB Velp, The Netherlands
Miguel E. Leal
Affiliation:
Hugo de Vries Laboratory, Department of Biology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands, email: [email protected]
Antoine M. Cleef
Affiliation:
Hugo de Vries Laboratory, Department of Biology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands, email: [email protected]

Abstract

Changes in structure of a Costa Rican upper montane Quercus forest were studied in twelve 0.1 ha plots along a chronosequence including 8- to 20-year-old Early Secondary Forest (ESF), 25- to 32-year-old Late Secondary Forest (LSF) and mature Primary Forest (PF). In 1.2 ha 2854 stems ≥ 3.0 cm dbh belonging to 42 tree species were recorded. Tree species richness per 0.1 ha ranged from 15 to 30. Diversity indices did not change significantly during succession. Stem density did not differ significantly among successional phases, while basal area was significantly higher in PF than in ESF and LSF. Maximum canopy height and basal area increased linearly during the first three decades of recovery. Height and dbh showed a significant, logarithmic regression for all forest phases. A period of 84 y was estimated as the theoretically minimum time needed for structural recovery. The maximum canopy height and basal area recovered two to five times slower in upper montane than in lower montane or lowland Neotropical forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Bazuin, T., Gerritzen, E. & Stelma, K. 1993. Structure analysis of an Andean oak forest in south-west Colombia. Thesis, Larenstein International School for Higher Agricultural Education, Velp. 64 pp.Google Scholar
Blaser, J. 1987. Standörtliche und waldkundliche Analyse eines Eichen-Wolkenwaldes (Quercus spp.) der Montanstufe in Costa Rica. Thesis, Georg-August Universität, Göttingen. 235 pp.Google Scholar
Bongers, F., Popma, J., Meave Del Castillo, J. & Carabias, J. 1988. Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. Vegetatio 74:5580.CrossRefGoogle Scholar
Brown, S. & Lugo, A. E. 1990. Tropical secondary forests, Journal of Tropical Ecology 6:132.CrossRefGoogle Scholar
Budowski, G. 1968. La influencia humana en la vegetación natural de montañas tropicales americanas. Pp. 157162 in Troll, C. (ed.). Geo-ecology of the mountainous regions of the tropical Americas. Colloquium Geographicum Band 9. Proc. UNESCO Mexico Symposium, August 1966. Ferd. Dümmlers Verlag, Bonn.Google Scholar
Burger, W. 19711993. Flora Costaricensis. Fieldiana Botany Series & New Series. Field Museum of Natural History, Chicago.CrossRefGoogle Scholar
Byer, M. D. & Weaver, P. L. 1977. Early secondary succession in an elfin woodland in the Luquillo mountains, Puerto Rico. Biotropica 23:386392.Google Scholar
Caillez, F. 1980. Forest volume estimation and yield prediction. FAO Forestry Paper 22/1. FAO, Rome.Google Scholar
Chaverri, A. & Rojas, I. 1986. Ensayo de inoculación de plántulas de roble copey (Quercus copeyensis Mueller) con suelo micorrícico en condiciones de invernadero. Pp. 111130 in Ciclo lectivo sobre técnicas de investigación en micorriza. International Science Foundation – Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba.Google Scholar
Connell, J. H. & Slatyer, R. O. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111:11191144.CrossRefGoogle Scholar
Egler, F. E. 1954. Vegetation science concepts. 1. Initial floristic composition, a factor in old-field vegetation development. Vegetatio 4:412417.CrossRefGoogle Scholar
Ewel, J. 1980. Tropical succession: manifold routes to maturity. Biotropica 12 (Supplement on tropical succession): 27.CrossRefGoogle Scholar
Ewel, J. 1991. Succession. Pp. 217223 in Golley, F. B. (ed.). Tropical rainforest ecosystems: structure and function (2nd edition). Elsevier Scientific Publications, Amsterdam.Google Scholar
Faber-Langendoen, D. & Gentry, A. H. 1991. The structure and diversity of rain forests at Bajo Calima, Chocó region, western Colombia. Biotropica 23:211.CrossRefGoogle Scholar
FAO. 1988. Soil map of the world. World Soil Resources Report 60. FAO, Rome.Google Scholar
Finegan, B. 1984. Forest succession. Nature 312:109114.CrossRefGoogle Scholar
Geuze, T. 1989. A silvicultural analysis of secondary succession in the montane oak forest belt, Cordillera de Talamanca, Costa Rica. Thesis, Larenstein International School for Higher Agricultural Education, Velp. 28 pp.Google Scholar
Gomez-Pompa, A. & Vazquez-Yanes, C. 1981. Successional studies of a rain forest in Mexico. Pp. 246266 in West, D. C., Shugart, H. H. & Botkin, D. B. (eds). Forest succession: concepts and application. Springer, New York.CrossRefGoogle Scholar
Gonzalez-Espinosa, M., Quintana-Ascencio, P. F., Ramirez-Marcial, N. & Gaytan-Guzman, P. 1991. Secondary succession in disturbed Pinus-Quercus forests in the highlands of Chiapas, Mexico. Journal of Vegetation Science 2:351360.CrossRefGoogle Scholar
Guevara, S., Purata, S. E. & Van Der Maarel, E. 1986. The role of remnant forest trees in tropical secondary succession. Vegetatio 66:7784.CrossRefGoogle Scholar
Hastenrath, S. 1973. On the Pleistocene glaciation of the Cordillera de Talamanca, Costa Rica. Zeitschrift für Gletscherkunde und Glazialgeologie 9:105121.Google Scholar
Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T. & Tosi, J. A. 1971. Forest environments in tropical life zones: a pilot study. Pergamon, Oxford, UK. 747 pp.Google Scholar
Horn, H. S. 1981. Some causes of variety in patterns of secondary succession. Pp. 2435 in West, D. C., Shugart, H. H. & Botkin, D. B. (eds). Forest succession: concepts and application. Springer, New York.CrossRefGoogle Scholar
INSTITUTO METEOROLOGICO NACIONAL. 1988. Catastro de las series dc.precipitacions medidas en Costa Rica. Ministerio de Recursos Naturales, Energía y Minas, San José. 363 pp.Google Scholar
Islebe, G. A. & Kappelle, M. 1994. A phytogeographical comparison between subalpine forests of Guatemala and Costa Rica. Feddes Repertorium 105:7387.CrossRefGoogle Scholar
Jimenez, W. 1984. Evaluación del crecimiento del Quercus copeyensis Mueller en un bosque de robles no intervenido en San Gerardo de Dota, Costa Rica. Thesis, Universidad Nacional, Heredia. 192 pp.Google Scholar
Jimenez, W., Chaverri, A., Miranda, R.Rojas, M. I. 1988. Aproximaciones silviculturales al manejo de un robledal (Quercus spp.) en San Gerardo de Dota, Costa Rica. Turrialba 38:208214.Google Scholar
Kappelle, M. 1993. Recovery following clearing of an upper montane Quercus forest in Costa Rica. Revista de Biología Tropical 41:4756.Google Scholar
Kappelle, M., Cleef, A. M. & Chaverri, A. 1989. Phytosociology of montane Chusquea-Quercus forests, Cordillera de Talamanca, Costa Rica. Brenesia 32:73105.Google Scholar
Kappelle, M., Cleef, A. M. & Chaverri, A. 1992. Phytogeography of Talamanca montane Quercus forests, Costa Rica. Journal of Biogeography 19:299315.CrossRefGoogle Scholar
Kappelle, M. & Juarez, M. E. 1994. The Los Santos Forest Reserve: a buffer zone vital for the Costa Rican La Amistad Biosphere Reserve. Environmental Conservation 21:166169.CrossRefGoogle Scholar
Kappelle, M. & Juarez, M. E. 1995. Agroecological zonation along an altitudinal gradient in the montane belt of the Los Santos Forest Reserve in Costa Rica. Mountain Research and Development 15:1937.CrossRefGoogle Scholar
Kappelle, M., Kennis, P. A. F. & De Vries, R. A. J. 1995. Changes in diversity along a successional gradient in a Costa Rican upper montane Quercus forest. Biodiversity and Conservation 4:1034.CrossRefGoogle Scholar
Kappelle, M., Van Velzen, H. P. & Wijtzes, W. H. 1994. Plant communities of montane secondary vegetation in the Cordillera de Talamanca, Costa Rica. Phytocoenologia 22:449484.CrossRefGoogle Scholar
Kappelle, M., Zamora, N. & Flores, T. 1991. Flora leñosa de la zona alta (2000–3819 m) de la Cordillera de Talamanca, Costa Rica. Brenesia 34:121144.Google Scholar
Kennis, P. A. F. & De Vries, R. A. J. 1993. Trends in diversity in mature and recovering montane Quercus forests, Cordillera de Talamanca, Costa Rica. Thesis, Amsterdam University and Nijmegen Catholic University, Amsterdam-Nijmegen. 97 pp.Google Scholar
Kuzee, M., Wijdeven, S. & De Haan, T. 1994. Secondary forests and succession: analysis of structure and species composition of abandoned pastures in the Monteverde Cloud Forest Reserve, Costa Rica. International Agricultural College Larenstein, Velp, and Agricultural University Wageningen, Wageningen. 84 pp.Google Scholar
Lamprecht, H. 1986. Waldbau in den Tropen. P. Parey, Hamburg. 318 pp.Google Scholar
Lugo, A. E. 1992. Comparison of tropical tree plantations with secondary forests of similar age. Ecological Monographs 62:141.CrossRefGoogle Scholar
Magurran, A. E. 1988. Ecological diversity and its measurement. Croom Helm, London. 179 pp.CrossRefGoogle Scholar
Meza, T. & Bonilla, A. 1990. Areas naturales protegidas de Costa Rica. Editorial Tecnológica de Costa Rica, Cartago. 318 pp.Google Scholar
Monasterio, M., Sarmiento, G. & Solbrig, O. T. (eds). 1987. Comparative studies on tropical mountain ecosystems: planning for research. Biology International. Special Issue 12. IUBS, Paris. 48 pp.Google Scholar
Purata, S. E. 1986. Floristic and structural changes during old-field succession in the Mexican tropics in relation to site history and species availability. Journal of Tropical Ecology 2:257276.CrossRefGoogle Scholar
Saldarriaga, J., West, D. C., Tharp, M. L. & Uhl, C. 1988. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology 76:938958.CrossRefGoogle Scholar
Soil Survey Staff. 1975. Soil taxonomy. Soil Conservation Service. US Department of Agriculture Handbook 436. USDA, Washington, D.C. 754 pp.Google Scholar
Standley, P. 19371938. Flora of Costa Rica. Botanical Series 18-B (I–IV). Field Museum of Natural History, Chicago. 1616 pp.CrossRefGoogle Scholar
Sugden, A. M., Tanner, E. V. J. & Kapos, V. 1985. Regeneration following clearing in a Jamaican montane rain forest: results of a ten-year study. Journal of Tropical Ecology 1:329351.CrossRefGoogle Scholar
Synnott, T. J. 1979. A manual of permanent plot procedures for tropical rain forests. Commonwealth Forestry Institute Paper 14. University of Oxford. 67 pp.Google Scholar
Toro, A. P. & Saldarriaga, J. G. 1990. Algunas características de la sucesión secundaria en campos de cultivo abandonados en Araracuara, Amazonas, Colombia. Colombia Amazonica 4:3157.Google Scholar
Uhl, C. & Jordan, C. F. 1984. Succession and nutrient dynamics following forest cutting and burning in Amazonia. Ecology 65:14761490.CrossRefGoogle Scholar
Valencia, R. & Jørgensen, P. M. 1992. Composition and structure of a humid montane forest on the Pasochoa volcano, Ecuador. Nordic Journal of Botany 12:239247.CrossRefGoogle Scholar
Van Dunné, F. 1993. Bryophyte diversity on Quercus copeyensis Muell. treelets in an undisturbed mature upper montane rain forest during the wet season in the Cordillera de Talamanca, Costa Rica. MSc Thesis, University of Amsterdam, Amsterdam. 28 pp.Google Scholar
Van Uffelen, J. G. 1991. A geological, geomorphological and soil transect study of the Chirripó massif and adjacent areas, Cordillera de Talamanca, Costa Rica. Thesis, Wageningen Agricultural University, Wageningen. 72 pp.Google Scholar
Van Valkenburg, J. L. C. H. & Ketner, P. 1994. Vegetation changes following human disturbance of mid-montane forest in the Wau area, Papua New Guinea. Journal of Tropical Ecology 10:4154.CrossRefGoogle Scholar
Vasquez, A. 1983. Soils. Pp. 6365 in Janzen, D. H. (ed.). Costa Rican natural history. University of Chicago Press, Chicago.Google Scholar
Weaver, P. L. & Murphy, P. G. 1990. Forest struture and productivity in Puerto Rico's Luquillo Mountains. Biotropica 22:6982.CrossRefGoogle Scholar
Weber, W. A. 1982. Mnemonic three-letter acronyms for the families of vascular plants: a device for more effective herbarium curation. Taxon 31:7481.CrossRefGoogle Scholar
Weyl, R. 1980. Geology of Central America. Gebr. Bornträger, Stuttgart. 371 pp.Google Scholar
Whitmore, T. C. 1990. An introduction to tropical rainforests. Clarendon Press, Oxford. 226 pp.Google Scholar
Whittaker, R. H. 1975. Communities and ecosystems. Macmillan, New York.Google Scholar
Woodson, R. J. Jr, & Schery, R. E. 19431980. Flora of Pananá. Missouri Botanical Garden, St Louis, MO.Google Scholar
Young, K. R. 1993. Woody and scandent plants on the edges of an Andean timberline. Bulletin of the Torrey Botanical Club 120:118.CrossRefGoogle Scholar
Zar, J. H. 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, N.J. 718 pp.Google Scholar