Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T23:24:33.081Z Has data issue: false hasContentIssue false

Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya

Published online by Cambridge University Press:  10 July 2009

Michael B. Jones
Affiliation:
Botany Department, Trinity College, University of Dublin, Dublin 2, Ireland.
Francis M. Muthuri
Affiliation:
Botany Department, Kenyatta University, P. O. Box 43844, Nairobi, Kenya.

Abstract

The standing live biomass of papyrus swamps is high compared with most other communities dominated by herbaceous vegetation. For the first time, measurements of below-ground rhizome and root biomass are reported here, in addition to measurements of shoot biomass, for a papyrus swamp located on Lake Naivasha, Kenya. The ratio of rhizome and root to shoot dry weight was 1.38: 1 and the total standing live biomass was 7.8 kg(dry weight) m−2. Detritus, formed from slowly decomposing papyrus, is normally the most important sink for carbon in this ecosystem. The amount of detritus retained by swamps varies but at L. Naivasha it contained almost 20 times the carbon found in living biomass. The net primary production of the swamp was calculated to be 6.28 kg(dry weight) m−2 y−1, which is amongst the highest recorded productivities for natural ecosystems. Model estimates of carbon input into the system from photosynthesis are incorporated into a carbon flow diagram for the swamp and this emphasises the importance of detritus as a sink for carbon in this ecosystem.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Aselmann, I. & Crutzen, P. J. J. 1989. Freshwater wetlands: global distribution of natural wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 9:307358.CrossRefGoogle Scholar
Atjay, G. L., Ketner, P. & Duvigneaud, P. 1979. Terrestrial primary production and phytomass. Pp. 129182 in Bolin, B., Degens, E., Kempel, S. & Ketner, P. (eds). The global carbon cycle. SCOPE 13. Wiley & Sons, Chichester. 491 pp.Google Scholar
Bradbury, I. K. & Grace, S. 1983. Primary production in wetlands. Pp. 285310 in Gore, A. J. P. (ed.). Ecosystems of the world 4A. Mires: swamp, bog, fen and moor; general studies. Elsevier, Amsterdam. 440 pp.Google Scholar
De La Cruz, A. A. 1986. Tropical wetlands as a carbon source. Aquatic Botany 25:109115.CrossRefGoogle Scholar
Gaudet, J. J. 1976. Nutrient relationships in the detritus of a tropical swamp: Archiv für Hydrobiologie 78:213239.Google Scholar
Gaudet, J. J. 1977. Natural drawdown on Lake Naivasha, Kenya, and the formation of papyrus swamps. Aquatic Botany 3:147.CrossRefGoogle Scholar
Gaudet, J. J. 1979. Seasonal changes in nutrients in a tropical swamp: North Swamp, Lake Naivasha, Kenya. Journal of Ecology 67:953981.CrossRefGoogle Scholar
Griffiths, H. 1993. Carbon isotope discrimination. Pp. 181192 in Hall, D. O., Scurlock, J. M. O., Bolhar-Nordenkampf, H. R., Leegood, R. C. & Long, S. P. (eds). Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman & Hall, London. 464 pp.Google Scholar
Hamilton, A. C. 1982. Environmental history of East Africa. Academic Press, London. 328 pp.Google Scholar
Hillaire-Marcel, C., Aucour, A-M., Bonnefille, R., Riollet, G., Vincens, A. & Williamson, D. 1989. 13C palynological evidence of differential residence times of organic carbon prior to its sedimentation in east African rift lakes and peat bogs. Quaternary Science Reviews 8:207212.CrossRefGoogle Scholar
Holfeld, H. S., Mallard, C. S. & Larue, T. A. 1979. Portable gas chromatograph. Plant and Soil 52:595598.CrossRefGoogle Scholar
Howard-Williams, C. & Gaudet, J. J. 1985. The structure and functioning of African swamps. Pp. 153175 in Denny, P. (ed.). The ecology and management of African wetland vegetation. W. Junk Publishers, Dordrecht. 337 pp.CrossRefGoogle Scholar
Hughes, R. H. & Hughes, J. S. 1992. A directory of African wetlands. IUCN, Gland/UNEP, Nairobi/WCMC, Cambridge. 820 pp.Google Scholar
Humphries, S. W. & Long, S. P. 1995. WIMOVAC: a software package for modelling the dynamics of plant leaf and canopy photosynthesis. Cabios 11:361371.Google ScholarPubMed
Jones, M. B. 1987. The photosynthetic characteristics of papyrus in a tropical swamp. Oecologia 71:355359.CrossRefGoogle Scholar
Jones, M. B. 1988. Photosynthetic responses of C3 and C4 wetland species in a tropical swamp. Journal of Ecology 76:253262.CrossRefGoogle Scholar
Jones, M. B. & Milburn, T. R. 1978. Photosynthesis in papyrus (Cyperuspapyrus L.). Photosynthetica 12:197199.Google Scholar
Jones, M. B. & Muthuri, F. M. 1985. The canopy structure and microclimate of papyrus (Cyperus papyrus) swamps. Journal of Ecology 73:481491.CrossRefGoogle Scholar
Monteith, J. L. & Unsworth, M. H. 1990. Principles of environmental physics. (2nd edition). Edward Arnold, London. 291 pp.Google Scholar
Muthuri, F. M. 1985. The primary production of papyrus (Cyperus papyrus,) in relation to environmental variables. Unpublished PhD. Thesis, University of Nairobi, Kenya.Google Scholar
Muthuri, F. M., Jones, M. B. & Imbamba, S. K. 1989. Primary productivity of papyrus (Cyperus papyrus) in a tropical swamp: Lake Naivasha, Kenya. Biomass 18:114.CrossRefGoogle Scholar
Piedade, M. T. F., Junk, W. J. & Long, S. P. 1991. The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72:14561463.CrossRefGoogle Scholar
Roberts, M. J., Long, S. P., Tieszen, L. L. & Beadle, C. L. 1993. Measurement of plant biomass and net primary production of herbaceous vegetation. Pp. 121 in Hall, D. O., Scurlock, J. M. O., Bolhar-Nordenkampf, H. R., Leegood, R. C. & Long, S. P. (eds). Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman & Hall, London. 464 pp.Google Scholar
Street-Perrott, F. A. 1992. Atmospheric methane – tropical wetland sources. Nature 355:2324.CrossRefGoogle Scholar
Thompson, K., Shrewry, P. R. & Woolhouse, H. W. 1979. Papyrus swamp development in the Upemba Basin, Zaïre: studies of population structure in Cyperus papyrus stands. Botanical Journal of the Linnean Society 78:299316.CrossRefGoogle Scholar
Thompson, K. & Hamilton, A. C. 1983. Peatlands and swamps of the African continent. Pp. 331373 in Gore, A. J. P. (ed.). Ecosystems of the world 4B. Mires: swamp, bog, fen and moor; regional studies. Elsevier, Amsterdam. 479 pp.Google Scholar
Westlake, D. F. 1975. Primary production of freshwater macrophytes. Pp. 189206 in Cooper, J. P. (ed.). IBP Vol 3 Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, 715 pp.Google Scholar
Whittaker, R. H. & Likens, G. E. 1975. The biosphere and man. Pp. 305328 in Leith, H. & Whittaker, R. H. (eds) Primary productivity of the biosphere. Ecological Studies 14. Springer-Verlag, Berlin. 339 pp.CrossRefGoogle Scholar