Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:16:07.834Z Has data issue: false hasContentIssue false

Species associations of congeneric species in a tropical seasonal rain forest of China

Published online by Cambridge University Press:  15 April 2016

Guoyu Lan
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, P. R. China Rubber Research Institute, The Chinese Academy of Tropical Agricultural Sciences, Danzhou City, Hainan Province, 571737, P. R. China
Yunbing Zhang
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, P. R. China
Fangliang He
Affiliation:
Department of Renewable Resources, University of Alberta, Edmonton, Alberta, CanadaT6G 2H1
Yuehua Hu
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, P. R. China
Hua Zhu
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, P. R. China
Min Cao*
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, P. R. China
*
1Corresponding author. Email: [email protected], [email protected]

Abstract:

In tropical plant communities with diverse species, many congeners are found to coexist. Do environment or biotic interactions structure the coexistence of congeners in tropical forest communities? In this paper, we aimed to disentangle the effect of environment (first-order effects) and species interactions (second-order effects) on the spatial distributions of tree species. We used a classification scheme and torus-translation to test the first-order interaction of 48 species from 17 genera in a fully mapped 20-ha dipterocarp tropical seasonal rain-forest plot in Xishuangbanna, south-west China. Then we used heterogeneous Poisson null models to reveal significant uni- and bivariate second-order interactions. The results demonstrated that (1) 34 of the 48 studied species showed a significant relation with at least one topographic variable. This confirmed that topographical heterogeneity is important for distribution of these congeners. Spatial segregation (36.6%) and partial overlap (34.8%) were the most common bivariate association types in Xishuangbanna plot, which indicated first-order effects (environment) were strong. (2) For small-scale associations, 51% saplings (1 to ≤ 5 cm) (68.8% for large trees with dbh > 5 cm) of the species showed non-significant associations. For large-scale associations, 61.6% saplings (81.2% for large trees) of the species showed non-significant associations. Lack of significant species interactions provides evidence for the unified neutral theory. In conclusion, both environment and biotic interactions structure congeneric species' coexistence in tropical seasonal rain forest in this region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERLY, D. D. & DONOGHUE, M. J. 1998. Leaf size, sapling allometry, and Corner's rules: phylogeny and correlated evolution in maples (Acer). American Naturalist 152:767791.Google Scholar
ASHTON, M. S., BROKAW, N. V. L., BUNYAVEJCHWIN, R., CHUYONG, G. B., CO, L., DATTARAJA, H. S., DAVIES, S. J., ESUFALI, S., EWANGO, C. E. N., FOSTER, R. B., GUNATILLEKE, N., GUNATILLEKE, S., HART, T. H., HERNANDEZ, C., HUBBELL, S. P., ITOH, A., JOHN, R., KANZAKI, M., KENFACK, D., S., K., LAFRANKIE, J. V., LEE, H.-S., LIENGOLA, I., MAKANA, J.-R., MANOKARAN, N., NAVARETTE HERNANDEZ, M., OHKUGO, T., PEREZ, R., PONGPATTANANURAK, N., SAMPER, C., SRI-NGERNYUANG, K., SUKUMAR, R., SUN, I.-F., SUREH, H. S., TAN, S., THOMAS, D. W., THOMPSON, J. D., VALLEJO, M. I., VILLA MUNOZ, G., VALENCIA, R., YAMAKURA, T. & ZIMMERMAN, J. K. 2004. Floristics and vegetation of the Forest Dynamics Plots. Pp. 90102 in Losos, E. C. & Leigh, E. G. (eds). Tropical forest diversity and dynamism: findings from a large-scale plot network. University of Chicago Press, Chicago.Google Scholar
CAO, M. & ZHANG, J. 1997. Tree species diversity of tropical forest vegetation in Xishuangbanna, SW China. Biodiversity and Conservation 6:9951006.Google Scholar
CHAVE, J. 2004. Neutral theory and community ecology. Ecology Letters 7:241253.Google Scholar
CHESSON, P. 1984. The storage effect in stochastic population models. Lecture Notes in Biomathematics 54:7689.Google Scholar
CONDIT, R. 1998. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer-Verlag, Berlin.Google Scholar
CONDIT, R., ASHTON, P. S., BAKER, P., BUNYAVEJCHEWIN, S., GUNATILLEKE, S., GUNATILLEKE, N., HUBBELL, S. P., FOSTER, R. B., ITOH, A., LAFRANKIE, J. V., LEE, H. S., LOSOS, E., MANOKARAN, N., SUKUMAR, R. & YAMAKURA, T. 2000. Spatial patterns in the distribution of tropical tree species. Science 288:14141418.CrossRefGoogle ScholarPubMed
DAVIES, S. J., PALMIOTTO, P. A., ASHTON, P. S., LEE, H. S. & LAFRANKIE, J. V. 1998. Comparative ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in relation to horizontal and vertical resource heterogeneity. Journal of Ecology 86:662673.CrossRefGoogle Scholar
GRUBB, P. J. 1977. The maintenance of species richness in plant communities: the importance of the regeneration niche. Biological Reviews 52:107145.Google Scholar
HARMS, K. E., WRIGHT, S. J., CALDERON, O., HERNANDEZ, A. & HERRE, E. A. 2000. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493495.CrossRefGoogle Scholar
HARMS, K. E., CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 2001. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology 89:947959.Google Scholar
HE, F. L., LEGENDRE, P. & LAFRANKIE, J. V. 1997. Distribution patterns of tree species in a Malaysian tropical rain forest. Journal of Vegetation Science 8:105114.Google Scholar
HENRIQUES, R. P. B. & DESOUSA, E. 1989. Population structure, dispersion and microhabitat regeneration of Carapa guianensis in northeastern Brazil. Biotropica 21: 204209.Google Scholar
HUBBELL, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Monographs in Population Biology. Princeton University Press, Princeton.Google Scholar
HUBBELL, S. P., AHUMADA, J. A., CONDIT, R. & FOSTER, R. B. 2001. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research 16: 859875.CrossRefGoogle Scholar
JOHN, R., DALLING, J. W., HARMS, K. E., YAVITT, J. B., STALLARD, R. F., MIRABELLO, M., HUBBELL, S. P., VALENCIA, R., NAVARRETE, H., VALLEJO, M. & FOSTER, R. B. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences USA 104:864869.CrossRefGoogle ScholarPubMed
LAN, G. Y., HU, Y. H., CAO, M. & ZHU, H. 2011.Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. Forest Ecology and Management 262:15071513.Google Scholar
LAN, G. Y., GETZINC, S., WIEGAND, T., HU, Y. H., XIE, G. S., ZHU, H. & CAO, M. 2012. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China. PLoS ONE 7 (9): e46074.Google Scholar
LEGENDRE, P., MI, X., REN, H., MA, K., YU, M., SUN, I.-F. & HE, F. 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663674.CrossRefGoogle Scholar
LIEBERMAN, M. & LIEBERMAN, D. 2007. Nearest-neighbor tree species combinations in tropical forest: the role of chance, and some consequences of high diversity. Oikos 116:377386.Google Scholar
MOONEY, K. A., JONES, P. & AGRAWAL, A. A. 2008. Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos 117:450458.Google Scholar
MOUQUET, N. & LOREAU, M. 2003. Community patterns in source-sink metacommunities. American Naturalist 162:544577.CrossRefGoogle ScholarPubMed
MYERS, N. 1988. Threatened biotas: “Hotspot” in tropical forests. Environmentalist 8 (3):120.Google Scholar
PETERS, H. A. 2003. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letter 6:757765.Google Scholar
PURVES, D. W. & PACALA, S. W. 2005. Ecological drift in niche-structured communities: neutral pattern does not imply neutral process. Pp. 107138 in Burslem, D., Pinard, M. & Hartley, S. (eds). Biotic interactions in the tropics: their role in the maintenance of species diversity. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
QUEENBOROUGH, S. A., BURSLEM, D., GARWOOD, N. C. & VALENCIA, R. 2007. Habitat niche partitioning by 16 species of Myristicaceae in Amazonian Ecuador. Plant Ecology 192:193207.Google Scholar
SEARS, A. W. & CHESSON, P. 2007. New methods for quantifying the spatial storage effect: an illustration with desert annuals. Ecology 88:22402247.Google Scholar
SEIDLER, T. G. & PLOTKIN, J. B. 2006. Seed dispersal and spatial pattern in tropical trees. PLoS Biology 4:21322137.Google Scholar
SWENSON, N. G., ENQUIST, B. J., THOMPSON, J. & ZIMMERMAN, J. K. 2007. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology 88:17701780.CrossRefGoogle ScholarPubMed
TANAKA, H., SHIBATA, M., MASAKI, T., IIDA, S., NIIYAMA, K., ABE, S., KOMINAMI, Y. & NAKASHIZUKA, T. 2008. Comparative demography of three coexisting Acer species in gaps and under closed canopy. Journal of Vegetation Science 19: 107127.Google Scholar
VELÁZQUEZ, E., PAINE, C. E. T., MAY, F. & WIEGAND, T. 2015. Linking trait similarity to interspecific spatial associations in a moist tropical forest. Journal of Vegetation Science 26:10681079.CrossRefGoogle Scholar
WANG, X. G., WIEGAND, T., HAO, Z. Q., LI, B. H., YE, J. & LIN, F. 2010. Species associations in an old-growth temperate forest in north-eastern China. Journal of Ecology 98:674686.Google Scholar
WANG, Z. S., AN, S. Q., LENG, X., DING, F. M., ZHENG, J. W. & CHEN, L. 2004. Population genetic diversity of the insular plant Neolitsea sericea based on random amplified polymorphic DNA (RAPD). Acta Ecologica Sinica 24:414422. [In Chinese with English abstract]Google Scholar
WEBB, C. O., ACKERLY, D. D., MCPEEK, M. A. & DONOGHUE, M. J. 2002. Phylogenies and community ecology. Annual Review of Ecology, Evolution and Systematics 33:475505.Google Scholar
WIEGAND, T. & MOLONEY, K. A. 2004. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104:209229.Google Scholar
WIEGAND, T., GUNATILLEKE, S. & GUNATILLEKE, N. 2007. Species associations in a heterogeneous Sri Lankan dipterocarp forest. American Naturalist 170: E67E95.CrossRefGoogle Scholar
WIEGAND, T., HUTH, A., GETZIN, S., WANG, X., HAO, Z., GUNATILLEKE, C. V. S. & GUNATILLEKE, I. A. U. N. 2012. Testing the independent species’ arrangement assertion made by theories of stochastic geometry of biodiversity. Proceedings of the Royal Society of London Series B 279:33123320.Google Scholar
WRIGHT, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:114.Google Scholar
YAMADA, T., NGAKAN, O. P. & SUZUKI, E. 2005. Differences in growth trajectory and strategy of two sympatric congeneric species in an Indonesian floodplain forest. American Journal of Botany 92:4552.Google Scholar
ZHANG, T. S., LI, K., WANG, Q., CAI, Y. L., YANG, K. & CHEN, L. Q. 2006. Seed predation and dispersal of Castanopsis fargesii by rodents in Tiantong Mountain, Zhejiang Province. Chinese Journal of Ecology 25:161165.Google Scholar
ZHU, H. 2006. Forest vegetation of Xishuangbanna, south China. Forest Studies in China 8 (2):158.Google Scholar