Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T07:07:51.733Z Has data issue: false hasContentIssue false

Spatiotemporal co-occurrence of predators and prey in a neotropical mammal community in southern Mexico

Published online by Cambridge University Press:  19 May 2022

R. Elena Galindo-Aguilar
Affiliation:
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional. Hornos 1003, Col. Nochebuena, Santa Cruz Xoxocotlán, 71230, Oaxaca, México
Beatriz Carely Luna-Olivera
Affiliation:
Centro de Altos Estudios de la Mixteca, Oaxaca, México Universidad Pedagógica Nacional Unidad 201. Camino a la Zanjita, Col. Nochebuena, Santa Cruz Xoxocotlán, 71230, Oaxaca, México
Marcelino Ramírez-Ibáñez
Affiliation:
CONACyT-Universidad Pedagógica Nacional-Unidad 201. Camino a la Zanjita, Col. Nochebuena, Santa Cruz Xoxocotlán, 71230, Oaxaca, México
Mario C. Lavariega*
Affiliation:
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional. Hornos 1003, Col. Nochebuena, Santa Cruz Xoxocotlán, 71230, Oaxaca, México
*
Author for correspondence: Mario C. Lavariega, Emails: [email protected]; [email protected]

Abstract

Predator-prey interactions are one of the central themes in ecology due to their importance as a key mechanism in structuring biotic communities. In the predator-prey systems, the behaviours of persecution and avoidance impact on the ecosystem dynamics as much as the trophic interactions. We aimed to analyse the spatiotemporal co-occurrences between prey and predators in a community of medium- and large-sized mammals in southern Mexico. We predict prey will avoid sites where a predator previously passed. Contrarily, we expect a search behaviour by predators and a synchronization in activity patterns among them. We found prey does not occur either in time or space where predators have passed, suggesting an avoidance behaviour. Contrary to our expectations, we did not find significant search behaviours from predators to prey. Synchronization in the daily temporal overlap between predators was higher (Δ = 0.77–0.82) than with their prey (Δ = 0.43 – 0.81). The results suggest prey perceives the risk of predation and displays avoidance behaviour both spatially and temporally, which is consistent with the fear theory. This study provides a complementary approach to understanding the behaviour mechanism between predators and prey through camera-trapping or similar data of spatiotemporal co-occurrences.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, BL, Engeman, RM and Leung, LKP (2014) The short-term effects of a routine poisoning campaign on the movements and detectability of a social top-predator. Environmental Science and Pollution Research 21, 21782190.CrossRefGoogle ScholarPubMed
Amarasekare, P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters 6, 11091122. Doi: 10.1046/j.1461-0248.2003.00530.x CrossRefGoogle Scholar
Aranda, M and Sánchez-Cordero, V (1996) Prey spectra of Jaguar (Panthera onca) and Puma (Puma concolor) in tropical forests of Mexico. Studies Neotropical Fauna & Environment 31, 6567.CrossRefGoogle Scholar
Ávila-Nájera, DM, Palomares, F, Chávez, C, Tigar, B and Mendoza, GD (2018) Jaguar (Panthera onca) and puma (Puma concolor) diets in Quintana Roo, Mexico. Animal Biodiversity and Conservation 41, 257266. doi: 10.32800/abc.2018.41.0257 CrossRefGoogle Scholar
Bénichou, O, Loverdo, C, Moreau, M and Voituriez, R (2011) Intermittent search strategies. Reviews of Modern Physics 83, 181.CrossRefGoogle Scholar
Bischoff-Mattson, Z and Mattson, D (2009) Effects of simulated mountain lion caching on decomposition of ungulate carcasses. Western North American Naturalist 69, 343350.CrossRefGoogle Scholar
Blake, LW and Gese, EM (2016) Resource selection by cougars: influence of behavioral state and season. The Journal of Wildlife Management 80, 12051217.CrossRefGoogle Scholar
Bouskila, A and Blumstein, D (1992) Rules of thumb for predation hazard assessment: predictions from a dynamic model. American Naturalist 139, 161176.CrossRefGoogle Scholar
Brown, JS (2019) Ecology of Fear. In Choe, JC (ed), Encyclopedia of Animal Behavior. Amsterdam: Elsevier, pp. 196202.CrossRefGoogle Scholar
Burton, AC, Sam, MK, Balangtaa, C and Brashares, JS (2012) Hierarchical multi-species modeling of carnivore responses to hunting, habitat and prey in a West African protected area. PLoS ONE 7, e38007. doi: 10.1371/journal.pone.0038007 CrossRefGoogle Scholar
Carbone, C (2002) A common rule for the scaling of carnivore density. Science 295, 22732276. doi: 10.1126/science.1067994 CrossRefGoogle ScholarPubMed
Carrillo, E, Fuller, TK and Saenz, JC (2009) Jaguar (Panthera onca) hunting activity: effects of prey distribution and availability. Journal of Tropical Ecology 25, 563567. doi: 10.1017/S0266467409990137 CrossRefGoogle Scholar
Carter, N, Jasny, M, Gurung, B and Liu, J (2015) Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Global Ecology and Conservation 3, 149162. https://doi.org/10.1016/j.gecco.2014.11.013 CrossRefGoogle Scholar
Cavalcanti, C (2008) Predator-Prey Relationships and Spatial Ecology of Jaguars in the Southern Pantanal, Brazil: Implications for Conservation and Management. Dissertation PhD. 112. https://digitalcommons.usu.edu/etd/112 Google Scholar
Chase, JM, Abrams, PA, Grover, JP, Diehl, S, Chesson, P, Holt, RD, Richards, SA, Nisbet, RM and Case, TJ (2002) The interaction between predation and competition: a review and synthesis. Ecology Letters 5, 302315.CrossRefGoogle Scholar
Chinchilla, F (1997) La dieta del jaguar (Panthera onca), el puma (Felis concolor) y el manigordo (Felis pardalis) (Carnivora: Felidae) en el Parque Nacional Corcovado, Costa Rica. Revista de Biología Tropical 45, 12231229.Google Scholar
Clemenza, SM, Rubin, ES, Johnson, CK, Botta, RA and Boyce, WM (2009) Puma predation on radiocollared and uncollared bighorn sheep. BMC Research Notes 2, 16.CrossRefGoogle ScholarPubMed
Clinchy, M, Sheriff, MJ and Zanette, LY (2012) Predator-induced stress and the ecology of fear. Functional Ecology 27, 5665. doi: 10.1111/1365-2435.12007 CrossRefGoogle Scholar
CONANP (2005) Programa de Conservación para el Desarrollo Sostenible (PROCODES). Comisión Nacional de Áreas Naturales Protegidas. Retrieved November 25, 2019, from https://www.gob.mx/conanp/acciones-y-programas/programa-de-conservacion-para-el-desarrollo-sostenible-procodes-57997 Google Scholar
CONANP (2019) Áreas Destinadas Voluntariamente a la Conservación. Retrieved December 18, 2019, from http://advc.conanp.gob.mx/sample-page Google Scholar
Cruz, LR, Muylaert, RL, Galetti, M and Pires, MM (2021) The geography of diet variation in Neotropical Carnivora. Mammal Review 52, 112128.CrossRefGoogle Scholar
Davison, AC and Hinkley, DV (1997) Bootstrap Methods and their Application. USA: Cambridge University Press.CrossRefGoogle Scholar
de Oliveira, TG and Pereira, JA (2014) Intraguild predation and interspecific killing as structuring forces of Carnivoran communities in South America. Journal of Mammalian Evolution 21, 427436. doi: 10.1007/s10914-013-9251-4 CrossRefGoogle Scholar
Di Bitetti, MS, De Angelo, CD, Di Blanco, YE and Paviolo, A (2010) Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36, 403412.CrossRefGoogle Scholar
Dias, DM, Massara, RL, de Campos, CB and Rodrigues, FHG (2019) Feline predator–prey relationships in a semi-arid biome in Brazil. Journal of Zoology 307, 282291.CrossRefGoogle Scholar
Eaton, JW, Bateman, D, Hauberg, S and Wehbring, R (2019) GNU Octave version 4.0. 0 manual: a high-level interactive language for numerical computations. 2015. http://www.gnu.org/software/octave/doc/interpreter, 8, 13.Google Scholar
Elbroch, LM and Kusler, A (2018) Are pumas subordinate carnivores, and does it matter? PeerJ 6, e4293. doi: 10.7717/peerj.4293 CrossRefGoogle ScholarPubMed
Emmons, LH (1987) Comparative feeding ecology of felids in a neotropical rainforest. Behavioral Ecology and Sociobiology 20, 271283.CrossRefGoogle Scholar
Endler, JA (1986) Defense against predators. In Feder, ME and Lauder, GV (eds.), Predator-prey Relationships: Perspectives and Approaches from the Study of Lower Vertebrates. Chicago: University of Chicago Press, pp. 109134.Google Scholar
Estrada-Hernández, CG (2008) Dieta, uso de hábitat y patrones de actividad del puma (Puma concolor) y el jaguar (Panthera onca) en la selva Maya, Centroamérica. Revista Mexicana de Mastozoología 12, 113130.CrossRefGoogle Scholar
Foster, RJ, Harmsen, BJ and Doncaster, CP (2010) The food habits of jaguars and pumas across a gradient of human disturbance. Journal of Zoology 280, 309318. doi: 10.1111/j.1469-7998.2009.00663.x CrossRefGoogle Scholar
Foster, V, Sarmento, P, Sollmann, R, Torres, N, Acomo, AT, Negroes, N, Fonseca, C and Silveira, L (2013) Jaguar and Puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica 45, 373379. doi: 10.1111/btp.12021 CrossRefGoogle Scholar
Gause, GF (1932) Experimental studies on the struggle for existence: I. Mixed population of two species of yeast. Journal of Experimental Biology 9, 389402.CrossRefGoogle Scholar
Gaynor, KM, Brown, JS, Middleton, AD, Power, ME and Brashares, JS (2019) Landscapes of fear: spatial patterns of risk perception and response. Trends in Ecology & Evolution 34, 355368. doi: 10.1016/j.tree.2019.01.004 CrossRefGoogle ScholarPubMed
Giordano, C, Lyra-Jorge, MC, Miotto, RA and Pivello, VR (2018) Food habits of three carnivores in a mosaic landscape of São Paulo state, Brazil. European Journal of Wildlife Research 64, 15. doi: 10.1007/S10344-018-1172-3 CrossRefGoogle Scholar
Gómez-Ortiz, Y, Monroy-Vilchis, O and Mendoza-Martínez, GD (2015) Feeding interactions in an assemblage of terrestrial carnivores in central Mexico. Zoological Studies 54, 18. Doi: 10.1186/S40555-014-0102-7 CrossRefGoogle Scholar
Gorini, L, Linnell, JD, May, R, Panzacchi, M, Boitani, L, Odden, M and Nilsen, EB (2012) Habitat heterogeneity and mammalian predator–prey interactions. Mammal Review 42, 5577.CrossRefGoogle Scholar
Gutiérrez-González, CE and López-González, CA (2017) Jaguar interactions with pumas and prey at the northern edge of jaguars’ range. PeerJ 5 e2886. doi: 10.7717/peerj.2886 CrossRefGoogle ScholarPubMed
Hardin, G (1960) The competitive exclusion principle. Science 131, 12921297.CrossRefGoogle ScholarPubMed
Harmsen, BJ, Foster, RJ, Silver, SC, Ostro, LE and Doncaster, CP (2009) Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a neotropical forest. Journal of Mammalogy 90, 612620.CrossRefGoogle Scholar
Hassell, MP (1966) Evaluation of parasite or predator responses. The Journal of Animal Ecology 35, 6575.CrossRefGoogle Scholar
Herrera, H, Chávez, EJ, Alfaro, LD, Fuller, TK, Montalvo, V, Rodrigues, F and Carrillo, E. (2018) Time partitioning among jaguar Panthera onca, puma Puma concolor and ocelot Leopardus pardalis (Carnivora: Felidae) in Costa Rica’s dry and rainforests. Revista de Biología Tropical 66, 15591568.CrossRefGoogle Scholar
INEGI (2000) Carta climática, escala 1:250,000. Instituto Nacional de Estadística y Geografía e Informática. México.Google Scholar
INEGI (2015) Uso de suelo y vegetación, escala 1:250000, serie VI (continuo nacional), escala 1:250000. Instituto Nacional de Estadística y Geografía. México.Google Scholar
Ironside, KE, Mattson, DJ, Theimer, T, Jansen, B, Holton, B, Arundel, T, Peters, M, Sexton, J and Edwards, TC (2017) Quantifying animal movement for caching foragers: the path identification index (PII) and cougars, Puma concolor . Movement Ecology 5, 117.CrossRefGoogle ScholarPubMed
Karanth, KU, Srivathsa, A, Vasudev, D, Puri, M, Parameshwaran, R and Kumar, NS (2017) Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proceedings of the Royal Society B: Biological Sciences 284, 20161860.CrossRefGoogle ScholarPubMed
Kotler, BP and Holt, RD (1989) Predation and competition: the interaction of two types of species interactions. Oikos 54, 256260.CrossRefGoogle Scholar
Laundré, JW (2010). Behavioral response races, predator: prey shell games, ecology of fear, and patch use of pumas and their ungulate prey. Ecology 91, 29953007.CrossRefGoogle ScholarPubMed
Laundré, JW, Hernández, L and Ripple, WJ (2010) The landscape of fear: ecological implications of being afraid. The Open Ecology Journal 3, 17.CrossRefGoogle Scholar
Lima, SL and Dill, LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68, 619640. Doi: 10.1139/z90-092 CrossRefGoogle Scholar
Luis-Santiago, M and Duran, E (2020) Voluntary conservation areas in Mexico. Solutions. Retrieved July 5, 2021, from https://thesolutionsjournal.com/2020/12/01/voluntary-conservation-areas-in-mexico/ Google Scholar
Martins, R, Quadros, J and Mazzolli, M (2008) Hábito alimentarios a interferencia antrópica na atividade de marcação territorial do Puma concolor e Leopardus pardalis (Carnivora: Felidae) e otros carnívoros na Estação Ecológica de Juréia-Itatins, São Paulo, Brasil. Revista Brasileira de Zoologia 25, 427435.CrossRefGoogle Scholar
Massara, RL, Paschoal, AM de O, Bailey, LL, Doherty, PF, Barreto, MF and Chiarello, AG (2018) Effect of humans and pumas on the temporal activity of ocelots in protected areas of Atlantic Forest. Mammalian Biology 92, 8693. Doi: 10.1016/j.mambio.2018.04.009 CrossRefGoogle Scholar
Meave, JA, Rincón, A and Romero-Romero, MA (2006) Oak forests of the Hyper-Humid Region of La Chinantla, Northern Oaxaca Range, Mexico. In Kappelle, M (ed.), Ecology and Conservation of Neotropical Montane Oak Forests. Berlin: Springer. https://doi.org/10.1007/3-540-28909-7_9 Google Scholar
Meredith, M and Ridout, M (2017) Overlap: estimates of coefficient of overlapping for animal activity patterns. R Package Version 0.3.0. Available at https://CRAN.R-project.org/package=overlap (accessed 29 January 2020).Google Scholar
Montalvo, VH, Fuller, TK, Saénz-Bolaños, C, Cruz-Díaz, JC, Hagnauer, I, Herrera, H and Carrillo, E (2020) Influence of sea turtle nesting on hunting behavior and movements of jaguars in the dry forest of northwest Costa Rica. Biotropica 52, 10761083.CrossRefGoogle Scholar
Monterroso, P, Díaz-Ruiz, F, Lukacs, P.M, Alves, PC and Ferreras, P (2020) Ecological traits and the spatial structure of competitive coexistence among carnivores. Ecology 101, e03059 CrossRefGoogle ScholarPubMed
Moreno, RS, Kays, RW and Samudio, R (2006) Competitive release in diets of Ocelot (Leopardus pardalis) and Puma (Puma concolor) after Jaguar (Panthera onca) decline. Journal of Mammalogy 87, 808816. doi: 10.1644/05-mamm-a-360r2.1 CrossRefGoogle Scholar
Morueta-Holme, N, Blonder, B, Sandel, B, McGill, BJ, Peet, RK, Ott, JE, Violle, C, Enquist, BJ, Jørgensen, PM and Svenning, JC (2016) A network approach for inferring species associations from co-occurrence data. Ecography 39, 11391150.CrossRefGoogle Scholar
Muhly, TB, Semeniuk, C, Massolo, A, Hickman, L and Musiani, M (2011) Human activity helps prey win the predator-prey space race. PLoS one 6, e17050.CrossRefGoogle ScholarPubMed
Müller, M (1995) Equation of time-problem in astronomy. Acta Physica Polonica Series A 88, S-49.Google Scholar
Murakami, H and Gunji, Y (2017) Autonomous change of behavior for environmental context: an intermittent search model with misunderstanding search pattern. Mathematical Methods in the Applied Sciences 40, 70137021. doi: 10.1002/MMA.4508 CrossRefGoogle Scholar
Niedballa, J, Wilting, A, Sollmann, R, Hofer, H and Courtiol, A (2019) Assessing analytical methods for detecting spatiotemporal interactions between species from camera-trapping data. Remote Sensing in Ecology and Conservation 5, 272285. doi: 10.1002/rse2.107 CrossRefGoogle Scholar
Novack, AJ, Main, MB, Sunquist, ME and Labisky, RF (2005) Foraging ecology of jaguar (Panthera onca) and puma (Puma concolor) in hunted and non-hunted sites within the Maya Biosphere Reserve, Guatemala. Journal of Zoology 267, 167178.CrossRefGoogle Scholar
Núñez-Pérez, R and Miller, B (2019) Movements and home range of jaguars (Panthera onca) and mountain lions (Puma concolor) in a tropical dry forest of western Mexico. In Reyna-Hurtado, R and Chapman, C (eds.), Movement Ecology of Neotropical Forest Mammals. Switzerland: Springer, Cham, pp. 243262.CrossRefGoogle Scholar
O’Connell, AF, Nichols, JD and Karanth, KU (2010) Science, conservation and camera traps. Springer Japan. In O’Connell, AF, Nichols, JD and Karanth, U (eds.), Camera-traps in Animal Ecology: Methods and Analyses. doi: 10.1007/978-4-431-99495-4 Google Scholar
Palomares, F, González-Borrajo, N, Chávez, C, Rubio, Y, Verdade, L, Monsa, R, Harmsen, B, Adrados, B and Zanin, M (2018) Scraping marking behaviour of the largest Neotropical felids. PeerJ 6, e4983. doi: 10.7717/peerj.4983 CrossRefGoogle ScholarPubMed
Parsons, WA, Bland, C, Forresterd, T, Baker-Whattonf, MC, Schuttlera, SG, McShead, WJ, Costello, R and Kays, R (2016) The ecological impact of humans and dogs on wildlife in protected areas in eastern North America. Biological Conservation 203, 7588. doi: 10.1016/j.biocon.2016.09.001 CrossRefGoogle Scholar
Peckarsky, BL, Abrams, PA, Bolnick, DI, Dill, LM, Grabowski, JH, Luttbeg, B, Orrock, JL, Peacor, SD, Preisser, EL, Schmitz, OJ and Trussell, GC (2008) Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions. Ecology 89, 24162425. doi: 10.1890/07-1131.1 CrossRefGoogle ScholarPubMed
Preisser, EL and Bolnick, DI (2008) The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PLoS ONE 3, e2465. doi: 10.1371/JOURNAL.PONE.0002465 CrossRefGoogle ScholarPubMed
Preisser, EL, Bolnick, DI and Benard, MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86, 501509.CrossRefGoogle Scholar
Pudyatmoko, S (2019) Spatiotemporal inter-predator and predator–prey interactions of mammalian species in a tropical savanna and deciduous forest in Indonesia. Mammal Research 64, 191202.CrossRefGoogle Scholar
Rabinowitz, AR and Nottingham, BG (1986) Ecology and behaviour of the Jaguar (Panthera onca) in Belize, Central America. Journal of Zoology 210, 149159. doi: 10.1111/J.1469-7998.1986.TB03627.X CrossRefGoogle Scholar
Ramírez-Pulido, J, González-Ruíz, N, Gardner, AL and Arroyo-Cabrales, J (2014) List of recent land mammals of Mexico. Special Publications Museum of Texas Tech University 63, 169.Google Scholar
Rich, LN, Miller, DA, Robinson, HS, McNutt, JW and Kelly, MJ (2016) Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. Journal of Applied Ecology 53, 12251235. doi: 10.1111/1365-2664.12650 CrossRefGoogle Scholar
Ridout, MS and Linkie, M (2009) Estimating overlap of daily activity patterns from camera-trap data. Journal of Agricultural, Biological, and Environmental Statistics 14, 322337. doi: 10.1198/jabes.2009.08038 CrossRefGoogle Scholar
Romero-Muñoz, A, Maffei, L, Cuéllar, E and Noss, AJ (2010) Temporal separation between jaguar and puma in the dry forests of southern Bolivia. Journal of Tropical Ecology 26, 303311. doi: 10.1017/S0266467410000052 CrossRefGoogle Scholar
Rueda, P, Mendoza, GD, Martínez, D and Rosas-Rosas, OC (2013) Determination of the jaguar (Panthera onca) and puma (Puma concolor) diet in a tropical forest in San Luis Potosi, Mexico. Journal of Applied Animal Research 41, 484489. doi: 10.1080/09712119.2013.787362 CrossRefGoogle Scholar
Santos, F, Carbone, C, Wearn, OR, Rowcliffe, JM, Espinosa, S, Moreira, MG, Ahumada, JA, Sousa, AL, Trevelin, LC, Alvarez-Loayza, P, Spironello, WR, Jansen, PA, Juen, L and Peres, CA (2019) Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS ONE 14, e0213671. doi: 10.1371/journal.pone.0213671 CrossRefGoogle ScholarPubMed
Scognamillo, D, Maxit, IE, Sunquist, M and Polisar, J (2003) Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan llanos. Journal of Zoology 259, 269279.CrossRefGoogle Scholar
Sih, A (2005) Predator-prey space use as an emergent outcome of a behavioral response race. In Barbosa, P and Castellanos, I (eds.), Ecology of Predator-prey. Oxford: Oxford University Press, pp: 240255.Google Scholar
Smith, JA, Donadio, E, Pauli, JN, Sheriff, MJ and Middleton, AD (2019) Integrating temporal refugia into landscapes of fear: prey exploit predator downtimes to forage in risky places. Oecologia 189, 883890. doi: 10.1007/s00442-019-04381-5 CrossRefGoogle ScholarPubMed
Smith, JD, Mcdougal, C and Miquelle, D (1989) Scent marking in free-ranging tigers, Panthera tigris . Animal Behaviour 37, 110.CrossRefGoogle Scholar
Sollmann, R (2018) A gentle introduction to camera-trap data analysis. African Journal of Ecology 56, 740749. doi: 10.1111/aje.12557 CrossRefGoogle Scholar
Sollmann, R, Furtado, MM, Hofer, H, Jácomo, ATA, Tôrres, NM and Silveira, L (2012) Using occupancy models to investigate space partitioning between two sympatric large predators, the jaguar and puma in central Brazil. Mammalian Biology 77, 4146. doi: 10.1016/j.mambio.2011.06.011 CrossRefGoogle Scholar
Stephens, DW and Krebs, JR (2019) Foraging Theory. Princeton: Princeton University Press.CrossRefGoogle Scholar
Sunquist, M and Sunquist, F (2002) Wild Cats of the World. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
Suselbeek, L, Emsens, WJ, Hirsch, BT, Kays, R, Rowcliffe, JM, Zamora-Gutierrez, V and Jansen, PA (2014) Food acquisition and predator avoidance in a Neotropical rodent. Animal Behaviour 88, 4148. doi: 10.1016/j.anbehav.2013.11.012 CrossRefGoogle Scholar
Swann, DE, Kawanishi, K and Palmer, J (2011) Evaluating types and features of camera-traps in ecological studies: A guide for researchers. In O’Connell, AF, Nichols, JD and Karanth Ullas, U (eds.), Camera-traps in Animal Ecology: Methods and Analyses. Japan: Springer Japan, pp. 2743. doi: 10.1007/978-4-431-99495-4_3 CrossRefGoogle Scholar
Tirelli, FP, de Freitas, TRO, Michalski, F, Percequillo, AR and Eizirik, E (2019) Using reliable predator identification to investigate feeding habits of Neotropical carnivores (Mammalia, Carnivora) in a deforestation frontier of the Brazilian Amazon. Mammalia 83, 415427. doi: 10.1515/mammalia-2018-0106 CrossRefGoogle Scholar
Van de Kerk, M, Onorato, DP, Criffield, MA, Bolker, BM, Augustine, BC, McKinley, SA and Oli, MK (2015) Hidden semi-Markov models reveal multiphasic movement of the endangered Florida panther. Journal of Animal Ecology 84, 576585.CrossRefGoogle ScholarPubMed
Van Der Wal, H (1999) Chinantec Shifting Cultivation: Interactive Land use. A Case-study in the Chinantla, México, on Secondary Vegetation, Soils and Crop Performance Under Indigenous Shifting Cultivation. The Netherlands: Treemail Publishers, Heelsum.Google Scholar
van Rossum, G. (1995). Python tutorial. Amsterdam.Google Scholar
Yang, H, Zhao, X, Han, B, Wang, T, Mou, P, Ge, J and Feng, L (2018) Spatiotemporal patterns of Amur leopards in northeast China: influence of tigers, prey, and humans. Mammalian Biology 92, 120128. doi: 10.1016/J.MAMBIO.2018.03.009 CrossRefGoogle Scholar
Supplementary material: File

Galindo-Aguilar et al. supplementary material

Galindo-Aguilar et al. supplementary material

Download Galindo-Aguilar et al. supplementary material(File)
File 2.5 MB