Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T19:25:42.707Z Has data issue: false hasContentIssue false

Soil and light effects on the sapling performance of the shade-tolerant species Brosimum alicastrum (Moraceae) in a Mexican tropical rain forest

Published online by Cambridge University Press:  01 November 2008

Leonel Lopez-Toledo*
Affiliation:
Centro de Investigaciones en Ecosistemas, UNAM, Campus Morelia, Apartado Postal 27-3, Xangari 58089, Morelia, Michoacán, México Department of Plant and Soil Science, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
Mariana Martínez
Affiliation:
Centro de Investigaciones en Ecosistemas, UNAM, Campus Morelia, Apartado Postal 27-3, Xangari 58089, Morelia, Michoacán, México
Michiel van Breugel
Affiliation:
Wageningen University, Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, P.O. Box 47, NL-6700 AA, Wageningen, The Netherlands Smithsonian Tropical Research Institute, Applied Ecology Program, Roosevelt Ave. 401, Balboa, Panama
Frank J. Sterck
Affiliation:
Wageningen University, Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, P.O. Box 47, NL-6700 AA, Wageningen, The Netherlands
*
1Corresponding author, at University of Aberdeen. Emails: [email protected]; [email protected]

Abstract:

Many studies conclude that light is the most important resource that determines plant performance of tree saplings in tropical rain forests, and implicitly suggest that soil resources are less important. To provide a quantitative test for soil versus light effects on sapling performance, we studied how saplings of the shade-tolerant tree species Brosimum alicastrum responded to contrasting levels of light availability and soil fertility in a Mexican tropical rain forest. Therefore saplings were selected from ten low-light exposure (crown position index <1.5) and ten high-light exposure (crown position index ≥2.5) sites either on productive alluvial soils, or on poor sandy soils on adjacent hills. Annual growth responses were scored for 58 saplings. The soil–light interaction had a strong positive effect on branching rate and leaf area production, rather than light or soil alone. Height growth only increased at higher light availability. Herbivore damage was higher on the more productive soil and, to a lesser extent, at higher light availability. Our results suggest that saplings (1) responded differently to soil and light availability, (2) expanded in overall size when both soil and light limitations are released, but only increased in height with increasing light intensity (3) and faced a trade-off between expansion and defence along both soil and light gradients. This study emphasizes the role of soil resources, in interaction with light availability, on the plastic responses in saplings living in a tropical forest understorey.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERLY, D. D. & BAZZAZ, F. A. 1995. Leaf dynamics, self-shading and carbon gain in seedlings of a tropical pioneer tree. Oecologia 101:289298.CrossRefGoogle ScholarPubMed
AERTS, R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology 84:597608.CrossRefGoogle Scholar
ALONSO, C. & HERRERA, C. M. 2003. Developmental and spatial covariation of nutrients in growing leaves of Daphne laureola and their relationships with herbivory. New Phytologist 159:645656.CrossRefGoogle ScholarPubMed
BAKER, T. R., BURSLEM, D. F. R. P. & SWAINE, M. D. 2003a. Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest. Journal of Tropical Ecology 19:109125.CrossRefGoogle Scholar
BAKER, T. R., SWAINE, M. D. & BURSLEM, D. F. R. P. 2003b. Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspectives in Plant Ecology, Evolution and Systematics 6:2136.CrossRefGoogle Scholar
BALTZER, J. L., THOMAS, S. C., NILUS, R. & BURSLEM, D. F. R. P. 2005. Edaphic specialization in tropical trees: physiological correlates and responses to reciprocal transplantation. Ecology 86:30633077.CrossRefGoogle Scholar
BARALOTO, C., BONAL, D. & GOLDBERG, D. E. 2006. Differential seedling growth response to soil resource availability among nine neotropical tree species. Journal of Tropical Ecology 22:487497.CrossRefGoogle Scholar
BLOOR, J. M. & GRUBB, P. J. 2004. Morphological plasticity of shade-tolerant tropical rainforest tree seedlings exposed to light changes. Functional Ecology 18:337348.CrossRefGoogle Scholar
BOEGE, K. & DIRZO, R. 2004. Instraspecific variation in growth, defense and herbivory in Dialium guianense (Caesalpiniaceae) mediated by edaphic heterogeneity. Plant Ecology 175:5969.CrossRefGoogle Scholar
BURSLEM, D. F. R. P., GRUBB, P. J. & TURNER, I. M. 1996. Responses to simulated drought and elevated nutrient supply among shade-tolerant tree seedlings of lowland tropical forest in Singapore. Biotropica 28:636648.CrossRefGoogle Scholar
CANHAM, C. D. 1989. Different responses to gaps among shade-tolerant tree species. Ecology 70:548550.CrossRefGoogle Scholar
CELEDÓN, M. H. 2006. Impacto del sistema agricola roza-tumba-quema sobre las características de tres unidades de suelo en la selva Lacandona de Chiapas. MSc. Thesis. National University of Mexico. 122 pp.Google Scholar
CHAZDON, R. L., WILLIAMS, K. & FIELD, C. B. 1988. Interactions between crown structure and light environment in five rainforest Piper species. American Journal of Botany 75:14591471.CrossRefGoogle Scholar
CLARK, D. A. & CLARK, D. B. 1992. Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecological Monographs 62:315344.CrossRefGoogle Scholar
COLEY, P. D. 1988. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74:531536.CrossRefGoogle ScholarPubMed
COLEY, P. D., BRYANT, J. P. & CHAPIN, F. S. 1985. Resource availability and plant antiherbivore defense. Science 230:895899.CrossRefGoogle ScholarPubMed
COOMES, D. A. & GRUBB, P. J. 1998a. Responses of juvenile trees to above- and belowground competition in nutrient-starved Amazonian rain forest. Ecology 79:768782.CrossRefGoogle Scholar
COOMES, D. A. & GRUBB, P. J. 1998b. A comparison of 12 tree species of Amazonian caatinga using growth rates in gaps and understorey, and allometric relationships. Functional Ecology 12:426435.CrossRefGoogle Scholar
CRAWLEY, M. J. 1993. Glim for ecologists. (Second edition). Blackwell Science, Oxford. 379 pp.Google Scholar
DENSLOW, J. S., SCHULTZ, J. C., VITOUSEK, P. M. & STRAIN, B. R. 1990. Growth-responses of tropical shrubs to treefall gap environments. Ecology 71:165179.CrossRefGoogle Scholar
EICHHORN, M. P., COMPTON, S. G. & HARTLEY, S. E. 2006. Seedling species determines rates of leaf herbivory in a Malaysian rain forest. Journal of Tropical Ecology 22:513519.CrossRefGoogle Scholar
ENGELBRECHT, B. M. J., COMITA, L. S., CONDIT, R., KURSAR, T. A., TYREE, M. T., TURNER, B. L. & HUBBELL, S. P. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:8082.CrossRefGoogle ScholarPubMed
GUNATILLEKE, C. V. S., GUNATILLEKE, I. A. U. N., PERERA, G. A. D., BURSLEM, D. F. R. P., ASHTON, P. M. S. & ASHTON, P. S. 1997. Responses to nutrient addition among seedlings of eight closely related species of Shorea in Sri Lanka. Journal of Ecology 85:301311.CrossRefGoogle Scholar
HUANTE, P., RINCON, E. & CHAPIN, F. S. 1998. Effect of changing light availability on nutrient foraging in tropical deciduous tree-seedlings. Oikos 82:449458.CrossRefGoogle Scholar
IBARRA-MANRIQUEZ, G. & MARTÍNEZ-RAMOS, M. 2002. Landscape variation of liana communities in a Neotropical rain forest. Plant Ecology 160:91112.CrossRefGoogle Scholar
KING, D. A. 1994. Influence of light level on the growth and morphology of saplings in a Panamanian forest. American Journal of Botany 81:948957.CrossRefGoogle Scholar
KNOPS, J. M. & REINHART, K. 2000. Specific leaf area along a nitrogen fertilization gradient. American Midland Naturalist 144:265272.CrossRefGoogle Scholar
MARTÍNEZ, E., RAMOS, C. & CHIANG, F. 1994. Lista florística de la Lacandona, Chiapas. Boletín de la Sociedad Botánica de México 54:99177.Google Scholar
MONTGOMERY, R. A. & CHAZDON, R. L. 2002. Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131:165174.CrossRefGoogle ScholarPubMed
PALMIOTTO, P. A., DAVIES, S. J., VOGT, K. A., ASHTON, M. S., VOGT, D. J. & ASHTON, P. S. 2004. Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology 92:609623.CrossRefGoogle Scholar
PAOLI, G. D. 2006. Divergent leaf traits among congeneric tropical trees with contrasting habitat associations on Borneo. Journal of Tropical Ecology 22:397408.CrossRefGoogle Scholar
PENNINGTON, T. D. & SARUKHÁN, J. 1998. Árboles tropicales de Mexico. Manual para la identificacion de las principales especies de árboles tropicales de México. UNAM-FCE, México City. 413 pp.Google Scholar
POORTER, L. 1999. Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13:396410.CrossRefGoogle Scholar
POORTER, L. & BONGERS, F. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:17331743.CrossRefGoogle ScholarPubMed
POORTER, L. & WERGER, M. J. A. 1999. Light environment, sapling architecture, and leaf display in six rain forest tree species. American Journal of Botany 86:14641473.CrossRefGoogle ScholarPubMed
RAMOS, J. & GRACE, J. 1990. The effects of shade on the gas exchange of seedlings of four tropical trees from Mexico. Functional Ecology 4:667677.CrossRefGoogle Scholar
RIJKERS, T., PONS, L. T. & BONGERS, F. 2000. The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Functional Ecology 14:7786.CrossRefGoogle Scholar
RODRIGUEZ-VELAZQUEZ, J., MARTÍNEZ-RAMOS, M. & DYER-LEAL, G. 1997. Brosimum alicastrum (ojoche). Pp. 97100 in González, S. E., Dirzo, R. & Voght, R. C. (eds). Historia natural de Los Tuxtlas. Instituto de Biología-Instituto de Ecología-UNAM, Mexico City.Google Scholar
SCHMID, B. & BAZZAZ, F. A. 1994. Crown construction, leaf dynamics, and carbon gain in two perennials with contrasting architecture. Ecological Monographs 64:177203.CrossRefGoogle Scholar
SIEBE, C., MARTÍNEZ-RAMOS, M., SEGURA-WARNHOLTZ, G., RODRÍGUEZ-VELÁZQUEZ, J. & SÁNCHEZ-BELTRÁN, S. 1996. Soil and vegetation patterns in the tropical rainforest at Chajul Southeast Mexico. Pp. 2526 in Sigmarangkir, D. (ed). Proceedings of the international congress on soil of tropical forest ecosystems (ISSS-AISS-IBG). Mulawarman University Press, Indonesia.Google Scholar
STERCK, F. J. 1999. Crown development in tropical rain forest trees in gaps and understorey. Plant Ecology 143:8998.CrossRefGoogle Scholar
STERCK, F. J., MARTÍNEZ-RAMOS, M., DYER-LEAL, G., RODRÍGUEZ-VELÁZQUEZ, J. & POORTER, L. 2003. The consequences of crown traits for the growth and survival of tree saplings in a Mexican lowland rainforest. Functional Ecology 17:194200.CrossRefGoogle Scholar
STERCK, F. J., POORTER, L. & SCHIEVING, F. 2006. Leaf traits determine the growth-survival trade-off across rain forest tree species. American Naturalist 167:758765.CrossRefGoogle ScholarPubMed
TURNER, I. M., BROWN, N. D. & NEWTON, A. C. 1993. The effect of fertilizer application on dipterocarp seedling growth and mycorrhizal infection. Forest Ecology and Management 57:329337.CrossRefGoogle Scholar
VEENENDAAL, E. M., SWAINE, M. D., LECHA, R. T., WALSH, M. F., ABEBRESE, I. K. & OWUSU-AFRIYIE, K. 1996. Responses of West African forest tree seedlings to irradiance and soil fertility. Functional Ecology 10:501511.CrossRefGoogle Scholar
VINCENT, G. 2006. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes. Annals of Botany 97:245255.CrossRefGoogle ScholarPubMed
WHITMORE, T. C. & BROWN, N. D. 1996. Dipterocarp seedling growth in rain forest canopy gaps during six and a half years. Philosophical Transactions of the Royal Society, series B: Biological Sciences 351:11951203Google Scholar