Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T12:48:27.934Z Has data issue: false hasContentIssue false

The role of the regeneration niche for the vertical stratification of vascular epiphytes

Published online by Cambridge University Press:  23 May 2013

Katrin Wagner*
Affiliation:
Universität Oldenburg, Institut für Biologie und Umweltwissenschaften, AG Funktionelle Ökologie, Postfach 2503, D-26111 Oldenburg, Germany
Wiebke Bogusch
Affiliation:
Universität Oldenburg, Institut für Biologie und Umweltwissenschaften, AG Funktionelle Ökologie, Postfach 2503, D-26111 Oldenburg, Germany
Gerhard Zotz
Affiliation:
Universität Oldenburg, Institut für Biologie und Umweltwissenschaften, AG Funktionelle Ökologie, Postfach 2503, D-26111 Oldenburg, Germany Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancón, Panamá, República de Panamá
*
1Corresponding author. Email: [email protected]

Abstract:

Vertical stratification of vascular epiphytes is frequently attributed to niche partitioning along microclimatic gradients but experimental confirmations of this notion are rare. This study investigates the role of the regeneration phase for the stratification of five bromeliad (Catopsis sessiliflora, Guzmania subcorymbosa, Tillandsia anceps, T. bulbosa and Werauhia gladioliflora) and seven aroid species (Anthurium acutangulum, A. brownii, A. clavigerum, A. durandii, A. friedrichsthalii, A. hacumense and A. scandens) in a Panamanian rain forest. We documented gradients of temperature, vapour pressure deficit and light (n = 10 d) as well as species height distributions (n = 11–120). Microclimatic gradients were substantial (maximal T and RH differences between strata: 5 °C and 18%, respectively) and mean attachment heights of the study species (range = 4–21 m) differed significantly. We tested sensitivity to recurrent drought (four treatments) during germination (all species, cumulative germination of 20 seeds, n = 3) and seedling growth (four aroid species, n = 25). Seedling survival of six aroid species transplanted to three heights (n = 27) was monitored in situ. Some species did not germinate under severe recurrent drought while others germinated at the same rate in all treatments. Seedlings of the most exposed species grew fastest under intermediate recurrent drought while those of the other three species grew fastest when kept constantly wet. Survival of transplanted seedlings did not depend on species attachment height, but this may be attributable to insufficient statistical power. Taken together, the results suggest that the stratification can be explained to a large degree by differential sensitivity to the vertical moisture gradient during the regeneration phase.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANDRADE, J. L. & NOBEL, P. S. 1997. Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica 29:261270.CrossRefGoogle Scholar
BADER, M., MENKE, G. & ZOTZ, G. 2009. A pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosa. Functional Ecology 23:472479.CrossRefGoogle Scholar
BENZING, D. H. 2000. Bromeliaceae – Profile of an adaptive radiation. Cambridge University Press, Cambridge. 690 pp.CrossRefGoogle Scholar
CALLAWAY, R. M., REINHART, K. O., MOORE, G. W., MOORE, D. J. M. & PENNINGS, S. C. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221230.CrossRefGoogle ScholarPubMed
CROAT, T. B. 1978. Flora of Barro Colorado Island. Stanford University Press, Stanford. 943 pp.Google Scholar
DAVIES-COLLEY, R. J., PAYNE, G. W. & ELSWIJK, M. V. 2000. Microclimate gradients across a forest edge. New Zealand Journal of Ecology 24:111121.Google Scholar
FISCHER, E. A. & ARAUJO, A. C. 1995. Spatial organization of a bromeliad community in the Atlantic rainforest, south-eastern Brazil. Journal of Tropical Ecology 11:559567.CrossRefGoogle Scholar
FREIBERG, M. 1997. Spatial and temporal pattern of temperature and humidity of a tropical premontane rain forest tree in Costa Rica. Selbyana 18:7784.Google Scholar
GARWOOD, N. C. 1983. Seed germination in a seasonal tropical forest in Panama: a community study. Ecological Monographs 53:159181.CrossRefGoogle Scholar
GRAHAM, E. A. & ANDRADE, J. L. 2004. Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. American Journal of Botany 91:699706.CrossRefGoogle Scholar
GRIFFITHS, H. & MAXWELL, K. 1999. In memory of C. S. Pittendrigh: does exposure in forest canopies relate to photoprotective strategies in epiphytic bromeliads? Functional Ecology 13:1523.CrossRefGoogle Scholar
GRUBB, P. J. 1977. Maintenance of species-richness in plant communities: importance of regeneration niche. Biological Reviews of the Cambridge Philosophical Society 52:107145.CrossRefGoogle Scholar
HEGARTY, T. W. 1978. The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review. Plant, Cell and Environment 1:101119.CrossRefGoogle Scholar
HIETZ, P. & BRIONES, O. 1998. Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305316.CrossRefGoogle Scholar
HIETZ, P., AUSSERER, J. & SCHINDLER, G. 2002. Growth, maturation and survival of epiphytic bromeliads in a Mexican humid montane forest. Journal of Tropical Ecology 18:177191.CrossRefGoogle Scholar
HOTHORN, T., BRETZ, F. & WESTFALL, P. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346363.CrossRefGoogle ScholarPubMed
HUNT, R. 1982. Plant growth curves – the functional approach to plant growth analysis. Edward Arnold, London. 248 pp.Google Scholar
JOHANSSON, D. 1974. Ecology of vascular epiphytes in West African rain forests. Acta Phytogeographica Suecica 59:1129.Google Scholar
KAHM, M., HASENBRINK, G., LICHTENBERG-FRATÉ, H., LUDWIG, J. & KSCHISCHO, M. 2010. grofit: fitting biological growth curves with R. Journal of Statistical Software 33:121.CrossRefGoogle Scholar
KRÖMER, T., KESSLER, M. & GRADSTEIN, S. R. 2007. Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecology 189:261278.CrossRefGoogle Scholar
LORENZO, N., MANTUANO, D. G. & MANTOVANI, A. 2010. Comparative leaf ecophysiology and anatomy of seedlings, young and adult individuals of the epiphytic aroid Anthurium scandens (Aubl.) Engl. Environmental and Experimental Botany 68:314322.CrossRefGoogle Scholar
MEYER, C. F. J. & ZOTZ, G. 2004. Do growth and survival of aerial roots limit the vertical distribution of hemiepiphytic aroids? Biotropica 36:483491.Google Scholar
PITTENDRIGH, C. S. 1948. The Bromeliad-Anopheles-Malaria complex in Trinidad. I – The bromeliad flora. Evolution 2:5889.Google ScholarPubMed
RAMBO, T. R. & NORTH, M. P. 2008. Spatial and temporal variability of canopy microclimate in a Sierra Nevada riparian forest. Northwest Science 82:259268.CrossRefGoogle Scholar
SNOW, D. W. 1981. Tropical frugivorous birds and their food plants: a world survey. Biotropica 13:114.CrossRefGoogle Scholar
STUNTZ, S., SIMON, U. & ZOTZ, G. 2002. Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. International Journal of Biometeorology 46:5359.CrossRefGoogle ScholarPubMed
TER STEEGE, H. & CORNELISSEN, J. H. C. 1989. Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21:331339.CrossRefGoogle Scholar
TOLEDO-ACEVES, T. & WOLF, J. H. D. 2008. Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, Mexico. Biotropica 40:246250.CrossRefGoogle Scholar
TOLEDO-ACEVES, T., GARCÍA-FRANCO, J. G., LANDERO LOZADA, S., LEÓN MATEOS, M. L. & MACMILLAN, K. 2012. Germination and seedling survivorship of three Tillandsia species in the cloud-forest canopy. Journal of Tropical Ecology 28:423426.CrossRefGoogle Scholar
VENABLES, W. N. & RIPLEY, B. D. 2002. Modern applied statistics with S. (Fourth edition). Springer, New York. 495 pp.CrossRefGoogle Scholar
WAGNER, S., BADER, M. Y. & ZOTZ, G. (in press). The temperature acclimation potential of tropical bryophytes. Plant Biology. doi:10.1111/plb.12037Google Scholar
WALSH, R. P. D. 1996. Microclimate and hydrology. Pp. 206233 in Richards, P. W. (ed.). The tropical rain forest. Cambridge University Press, Cambridge.Google Scholar
WERNER, F. A., HOMEIER, J., OESKER, M. & BOY, J. 2012. Epiphytic biomass of a tropical montane forest varies with topography. Journal of Tropical Ecology 28:2331.CrossRefGoogle Scholar
WICKHAM, H. 2009. ggplot2: elegant graphics for data analysis. Springer, New York. 221 pp.CrossRefGoogle Scholar
WINKLER, M., HÜLBER, K. & HIETZ, P. 2005. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest. Annals of Botany 95:10391047.CrossRefGoogle Scholar
WORLD METEOROLOGICAL ORGANIZATION. 2008. Guide to meteorological instruments and methods of observation. (Seventh edition). World Meteorological Organization, Geneva.Google Scholar
WRIGHT, S. J., HORLYCK, V., BASSET, Y., BARRIOS, H., BETHANCOURT, A., BOHLMAN, S. A., GILBERT, G. S., GOLDSTEIN, G., GRAHAM, E. A., KITAJIMA, K., LERDAU, M. T., MEINZER, F. C., ØDEGAARD, F., REYNOLDS, D. R., ROUBIK, D. W., SAKAI, S., SAMANIEGO, M., SPARKS, J. P., VAN BAEL, S., WINTER, K. & ZOTZ, G. 2003. Tropical canopy biology program, Republic of Panama. Pp. 137155 in Basset, Y., Horlyck, V. & Wright, S. J. (eds.). Studying forest canopies from above: The International Canopy Crane Network. United Nations Environmental Programme, Smithsonian Tropical Research Institute, New York.Google Scholar
ZOTZ, G. 2004. How prevalent is crassulacean acid metabolism among vascular epiphytes? Oecologia 138:184192.CrossRefGoogle ScholarPubMed
ZOTZ, G. 2007. Johansson revisited: the spatial structure of epiphyte assemblages. Journal of Vegetation Science 18:123130.CrossRefGoogle Scholar
ZOTZ, G. & VOLLRATH, B. 2002. Substrate preferences of epiphytic bromeliads: an experimental approach. Acta Oecologica 23:99102.CrossRefGoogle Scholar
ZOTZ, G. & VOLLRATH, B. 2003. The epiphyte vegetation of the palm Socratea exorrhiza – correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology 19:8190.CrossRefGoogle Scholar
ZOTZ, G., PATIÑO, S. & TYREE, M. T. 1997. Water relations and hydraulic architecture of woody hemiepiphytes. Journal of Experimental Botany 48:18251834.CrossRefGoogle Scholar
ZOTZ, G., HIETZ, P. & SCHMIDT, G. 2001. Small plants, large plants – the importance of plant size for the physiological ecology of vascular epiphytes. Journal of Experimental Botany 52:20512056.CrossRefGoogle ScholarPubMed
ZUUR, A. F., IENO, E. N., WALKER, N. J., SAVELIEV, A. A. & SMITH, G. M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York. 574 pp.CrossRefGoogle Scholar