Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T23:05:24.676Z Has data issue: false hasContentIssue false

The relationship between external temperature and daily activity in a large rodent (Dasyprocta azarae) in the Brazilian Pantanal

Published online by Cambridge University Press:  02 July 2015

Bruno Cid*
Affiliation:
Laboratório de Ecologia e Conservação de Populações, Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Rio e Janeiro, RJ, Brasil. Avenida Carlos Chagas, 373. CEP 21941-590 – Caixa Postal 68020
Luiz Gustavo R. Oliveira-Santos
Affiliation:
Laboratório de Ecologia e Conservação de Populações, Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Rio e Janeiro, RJ, Brasil. Avenida Carlos Chagas, 373. CEP 21941-590 – Caixa Postal 68020
Guilherme Mourão
Affiliation:
Laboratório de Ecologia e Conservação de Populações, Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Rio e Janeiro, RJ, Brasil. Avenida Carlos Chagas, 373. CEP 21941-590 – Caixa Postal 68020
*
1Corresponding author. Email: [email protected]

Abstract:

Daily activity patterns reflect interactions between circadian mechanisms and environmental stimuli. Among these stimuli, temperature can be an important factor affecting activity budgets. To sample the agouti (Dasyprocta azarae), a systematic camera-trap grid was established with 50 independent sampling sites. A circular kernel function was used to characterize the activity patterns of the agouti population. To evaluate shifts in activity as a function of mean daily temperature, the entire set of records was subdivided into smaller sets covering different temperature ranges. The activity pattern belonging to each set was characterized and compared through the overlap of their full activity (95% isopleth) and activity core (50% isopleth). Based on 400 independent records, agoutis were predominately diurnal. They shifted their activity core, while keeping their activity range (the amount of time a population remains active during the 24-h cycle) constant through the temperature gradient. The agouti demonstrated a unimodal activity pattern at lower temperatures, which became more bimodal at higher temperatures. Nevertheless, it kept its activity range constant, regardless of temperature. These results likely reflect a trade-off between activity time and thermoregulation during the diurnal period and demonstrate how the agouti can change its behaviour to achieve thermal comfort.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARONSON, B. D., BELL-PEDERSEN, D., BLOCK, G. D., BOS, N. P. A., DUNLAP, J. C., ESKIN, A., GARCEAU, N. Y., GEUSZ, M. E., JOHNSON, K. A., KHALSA, S. B. S., HOFFEN, G. C. K. V., KOUMENIS, C., LEE, T. M., LESAUTER, J., LINDGREN, K. M., LIU, Q., LOROS, J. J., MICHEL, S. H., MIRMIRAN, M., MOORE, R. Y., RUBY, N. F., SILVER, R., TUREK, F. W., ZATZ, M. & IRVING, Z. 1993. Circadian rhythms. Brain Research Reviews 18:315333.CrossRefGoogle ScholarPubMed
ASCHOFF, J. 1966. Circadian activity pattern with two peaks. Ecology 47:657662.CrossRefGoogle Scholar
BACIGALUPE, L. D., REZENDE, E. L., KENAGY, G. J. & BOZINOVIC, F. 2003. Activity and space use by degus: a trade-off between thermal conditions and food availability? Journal of Mammalogy 84:311318.2.0.CO;2>CrossRefGoogle Scholar
CID, B., OLIVEIRA-SANTOS, L. G. R. & MOURÃO, G. 2013. Seasonal habitat use of agoutis (Dasyprocta azarae) is driven by the palm Attalea phalerata in Brazilian Pantanal. Biotropica 45:380385.CrossRefGoogle Scholar
DUBOST, G. 1988. Ecology and social life of the red acouchy, Myoprocta exilis; comparison with the orange-rumped agouti, Dasyprocta leporina. Journal of Zoology 214:107123.CrossRefGoogle Scholar
GÓMEZ, H., WALLACE, R. B., AYALA, G. & TEJADA, R. 2005. Dry season activity periods of some Amazonian mammals. Studies on Neotropical Fauna and Environment 40:9195.CrossRefGoogle Scholar
HINZE, A. & PILLAY, N. 2006. Life in an African alpine habitat: diurnal activity patterns of the ice rat Otomys aloggetti robertsi. Arctic, Antarctic, and Alpine Research 38:540546.CrossRefGoogle Scholar
ILAN, M. & YOM-TOV, Y. 1990. Diel activity pattern of a diurnal desert rodent, Psammomys obesus. Journal of Mammalogy 71:6669.CrossRefGoogle Scholar
JORGE, M. L. & PERES, C. A. 2005. Population density and home range size of red-rumped agoutis (Dasyprocta leporina) within and outside a natural Brazil nut stand in southeastern Amazonia. Biotropica 37:317321.CrossRefGoogle Scholar
KENAGY, G. J., NESPOLO, R. F., VÁSQUEZ, R. A. & BOZINOVIC, F. 2002. Daily and seasonal limits of time and temperature to activity of degus. Revista Chilena de Historia Natural 75:567581.CrossRefGoogle Scholar
LAMBERT, T. D., KAYS, R. W., JANSEN, P. A., ALIAGA-ROSSEL, E. & WIKELSKI, M. 2009. Nocturnal activity by the primarily diurnal Central American agouti (Dasyprocta punctata) in relation to environmental conditions, resource abundance and predation risk. Journal of Tropical Ecology 25:211215.CrossRefGoogle Scholar
LANGFORD, A. 1983. Pattern of nocturnal activity of male Dipodomys ordii (Heteromyidae). The Southwestern Naturalist 28:341346.CrossRefGoogle Scholar
OLIVEIRA-SANTOS, L. G. R., MACHADO-FILHO, L. C. P., TORTATO, M. A. & BRUSIUS, L. 2009. Influence of extrinsic variables on activity and habitat selection of lowland tapirs (Tapirus terrestris) in the coastal sand plain shrub, southern Brazil. Mammalian Biology 75:219226.CrossRefGoogle Scholar
OLIVEIRA-SANTOS, L. G. R., ZUCCO, C. A., ANTUNES, P. C. & CRAWSHAW, P. G. 2010. Is it possible to individually identify mammals with no natural markings using camera-traps? A controlled case-study with lowland tapirs. Mammalian Biology 75:375378.CrossRefGoogle Scholar
OLIVEIRA-SANTOS, L. G. R., ZUCCO, C. A. & AGOSTINELLI, C. 2013. Using conditional circular kernel density functions to test hypotheses on animal circadian activity. Animal Behaviour 85:269280.CrossRefGoogle Scholar
RIETVELD, W. J., MINORS, D. S. & WATERHOUSE, J. M. 1993. Circadian rhythms and masking: an overview. Chronobiology International 10:206312.CrossRefGoogle ScholarPubMed
REZENDE, E. L., CORTÉS, A., BACIGALUPE, L. D., NESPOLO, R. F. & BOZINOVIC, F. 2003. Ambient temperature limits above-ground activity of the subterranean rodent Spalacopus cyanus. Journal of Arid Environments 55:6374.CrossRefGoogle Scholar
SUSELBEEK, L., EMSENS, W., HIRSCH, B. T., KAYS, R. W., ROWCLIFFE, J. M., ZAMORA-GUTIERREZ, V. & JANSEN, P. A. 2014. Food acquisition and predator avoidance in a Neotropical rodent. Animal Behaviour 88:4148.CrossRefGoogle Scholar
VÁCZI, O., KOÓSZ, B. & ALTBÄCKER, V. 2006. Modified ambient temperature perception affects daily activity patterns in the European Ground Squirrel (Spermophilus citellus). Journal of Mammalogy 87:5459.CrossRefGoogle Scholar
WAUTERS, L. A. 2001. Squirrels – medium sized granivores in woodland habitats. Pp. 131143 in Halle, S. & Stenseth, N. C. (eds.). Activity patterns in small mammals: an ecological approach. Springer, Berlin.Google Scholar