Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T03:40:44.198Z Has data issue: false hasContentIssue false

Regional-scale heterogeneity in primate community structure at multiple undisturbed forest sites across south-eastern Peru

Published online by Cambridge University Press:  01 February 2011

Suzanne Palminteri*
Affiliation:
Centre for Ecology, Evolution and Conservation, Schools of Environmental and Biological Sciences, University of East Anglia, Norwich, Norfolk NR47TJ, UK World Wildlife Fund Conservation Science Program, 1250 24th Street, N.W., Washington, DC 20037, USA
George V. N. Powell
Affiliation:
World Wildlife Fund Conservation Science Program, 1250 24th Street, N.W., Washington, DC 20037, USA
Carlos A. Peres
Affiliation:
Centre for Ecology, Evolution and Conservation, Schools of Environmental and Biological Sciences, University of East Anglia, Norwich, Norfolk NR47TJ, UK
*
1Corresponding author. Email: [email protected]

Abstract:

The forests of western Amazonia support high site-level biological diversity, yet regional community heterogeneity is poorly understood. Using data from line transect surveys at 37 forest sites in south-eastern Peru, we assessed whether local primate assemblages are heterogeneous at the scale of a major watershed. We examined patterns of richness, abundance and community structure as a function of forest type, hunting pressure, land-management regime and geographic location. The primate assemblage composition and structure varied spatially across this relatively small region of Amazonia (≈ 85 000 km2), resulting from large-scale species patchiness rather than species turnover. Primate species richness varied among sites by a factor of two, community similarity by a factor of four and aggregate biomass by a factor of 45. Several environmental variables exhibited influence on community heterogeneity, though none as much as geographic location. Unflooded forest sites had higher species richness than floodplain forests, although neither numerical primate abundance nor aggregate biomass varied with forest type. Non-hunted sites safeguarded higher abundance and biomass, particularly of large-bodied species, than hunted sites. Spatial differences among species assemblages of a relatively generalist taxon like primates in this largely undisturbed forest region imply that community heterogeneity may be even greater in more species-rich taxa, as well as in regions of greater forest habitat diversity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AYRES, J. M. 1986. Uakaris and Amazonian flooded forests. Ph.D. dissertation. University of Cambridge, Cambridge.Google Scholar
AYRES, J. M. & CLUTTON-BROCK, T. 1992. River boundaries and species range size in Amazonian primates. American Naturalist 140:531537.Google Scholar
AYRES, J. M., LIMA, D. M., MARTINS, E. S. & BARREIROS, J. L. 1991. On the track of the road: changes in subsistence hunting in a Brazilian Amazonian village. Pp. 8292 in Robinson, J. & Redford, K. (eds.). Neotropical wildlife use and conservation. University of Chicago Press, Chicago. 520 pp.Google Scholar
BENNETT, C., LEONARD, S. & CARTNER, S. 2001. Abundance, diversity, and patterns of distribution of primates on the Tapiche River in Amazonian Peru. American Journal of Primatology 54:119126.Google Scholar
BONNET, E. & VAN DE PEER, Y. 2002. zt: a software tool for simple and partial Mantel tests. Journal of Statistical Software 7:112.Google Scholar
BUCHANAN-SMITH, H., HARDIE, S., CACERES, C. & PRESCOTT, M. 2000. Distribution and forest utilization of Saguinus and other primates of the Pando Department, northern Bolivia. International Journal of Primatology 21:353379.Google Scholar
BUCKLAND, S. T., ANDERSON, D. R., BURNHAM, K. P., LAAKE, J. L., BORCHERS, D. L. & THOMAS, L. 2001. Introduction to distance sampling – estimating abundance of biological populations. Oxford University Press, Oxford. 432 pp.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 2002. Model selection and multimodel inference. (Second edition). Springer-Verlag, New York. 488 pp.Google Scholar
CHAPMAN, C. A. & ONDERDONK, D. A. 1998. Forests without primates: primate/plant codependency. American Journal of Primatology 45:127141.Google Scholar
CHRISTEN, A. & GEISSMANN, T. 1994. A primate survey in northern Bolivia, with special reference to Goeldi's monkey, Callimico goeldii. International Journal of Primatology 15;239275.Google Scholar
CLARKE, K. R. & GREEN, R. H. 1988. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46:213226.CrossRefGoogle Scholar
CLARKE, K. R. & WARWICK, R. M. 2001. Change in marine communities: an approach to statistical analysis and interpretation. (Second edition). Primer-E Ltd. Plymouth. 144 pp.Google Scholar
CLUTTON-BROCK, T. H. & HARVEY, P. H. 1977. Primate ecology and social organization. Journal of the Zoological Society of London 183:139.Google Scholar
DOUROJEANNI, M., BARANDIARÁN, A. & DOUROJEANNI, D. 2009. Amazonía Peruana en 2021: Explotación de recursos naturales e infraestructuras: ¿Qué está pasando? ¿Qué es lo que significan para el futuro? ProNaturaleza – Fundación Peruana para la Conservación de la Naturaleza. Lima. Peru. 162 pp.Google Scholar
EMMONS, L. 1984. Geographic variation in densities and diversities of non-flying mammals in Amazonia. Biotropica 16:210222.Google Scholar
EMMONS, L. 1997. Neotropical rainforest mammals: a field guide. (Second edition). University of Chicago Press, Chicago. 396 pp.Google Scholar
EMMONS, L. 1999. Of mice and monkeys: primates as predictors of mammal community richness. Pp. 171188 in Fleagle, J., Janson, C. & Reed, K. (eds.). Primate communities. Cambridge University Press. Cambridge.Google Scholar
ENDO, W., PERES, C. A., SALAS, E., MORI, S., SANCHEZ-VEGA, J., SHEPARD, G. H., PACHECO, V. & YU, D. W. 2010. Game vertebrate densities in hunted and nonhunted forest sites in Manu National Park, Peru. Biotropica 42:251261.CrossRefGoogle Scholar
FINE, P. V. A., MESONES, I. & COLEY, P. D. 2004. Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663665.Google Scholar
FOSTER, R. 1990. The floristic composition of the Río Manu floodplain forest. Pp. 99111 in Gentry, A. H. (ed.). Four neotropical rainforests, Yale University Press, New Haven. 627 pp.Google Scholar
FREESE, C., HELTNE, P., CASTRO, N. & WHITESIDES, G. 1982. Patterns and determinants of monkey densities in Peru and Bolivia, with notes on distributions. International Journal of Primatology 3:5390.Google Scholar
GALETTI, M., GIACOMINI, H. C., BUENO, R. S., BERNARDO, C. S. S., MARQUES, R. M., BOVENDORP, R. S., STEFFLER, C. E., RUBIM, P., GOBBO, S. K., DONATTI, C. I., BEGOTTI, R. A., MEIRELLES, F., NOBRE, R. D., CHIARELLO, A. G. & PERES, C. A. 2009. Priority areas for the conservation of Atlantic forest large mammals. Biological Conservation 142:12291241.Google Scholar
GROVES, C. P. 2005. PRIMATES. Pp. 111184 in Wilson, D. & Reeder, D. (eds). Mammal species of the world. Volume I. The Johns Hopkins University Press, Baltimore.Google Scholar
HAMILTON, S. L. K., KELLNDORFER, J., LEHNER, B. & TOBLER, M. 2007. Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology 89:2338.Google Scholar
HAUGAASEN, T. & PERES, C. A. 2005a. Mammal assemblage structure in Amazonian flooded and unflooded forests. Journal of Tropical Ecology 21;133145.Google Scholar
HAUGAASEN, T. & PERES, C. A. 2005b. Primate assemblage structure in Amazonian flooded and unflooded forests. American Journal of Primatology 67:243258.Google Scholar
HEYMANN, E., ENCARNACIÓN, F. & CANAQUIN, J. 2002. Primates of the Río Curaray, northern Peruvian Amazon. International Journal of Primatology 23:191201.Google Scholar
HOLBROOK, K. & LOISELLE, B. 2009. Dispersal in a Neotropical tree, Virola flexuosa (Myristicaceae): does hunting of large vertebrates limit seed removal? Ecology 90:14491455.Google Scholar
HUBBELL, S. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton. 448 pp.Google Scholar
KALLIOLA, R., LINNA, A., PUHAKKA, M., SALO, J. & RÄSÄNEN, M. 1993. Mineral nutrients in fluvial sediments from the Peruvian Amazon. Catena 20:333349.Google Scholar
KIRKBY, C. A. 2004. Implementación del Plan de Monitoreo de la Reserva de Reserva de Biósfera del Manu. Informe final. ProManu. Cusco. 206 pp.Google Scholar
KIRKBY, C. A. & PADILLA, P. 1998. An evaluation of the population and management of Tayassu tajacu and T. pecari in Madre de Dios, Peru. INRENA-CITES. Lima.Google Scholar
KIRKBY, C. A., DOAN, T. M., LLOYD, H., CORNEJO, A., ARIZABAL, W. & PALOMINO, A. 2000. Tourism development and the status of Neotropical lowland wildlife in Tambopata, south-eastern Peru: recommendations for tourism and conservation. Tambopata Reserve Society, London. 156 pp.Google Scholar
LEVI, T., SHEPARD, G., OHL-SCHACHERER, J., PERES, C. A. & YU, D. 2009. Modelling the long-term sustainability of indigenous hunting in Manu National Park, Peru: landscape-scale management implications for Amazonia. Journal of Applied Ecology 46:804814.CrossRefGoogle Scholar
MINAM (MINISTERIO DEL AMBIENTE DEL PERÚ) 2010. Dirección General de Ordenamiento Territorial-SIGMINAM. 2010. Áreas naturales protegidas del Perú, Mapa N-02. Lima.Google Scholar
MITTERMEIER, R. A. 1991. Hunting and its effects on wild primate populations in Suriname. Pp. 93107 in Robinson, J. & Redford, K. (eds.). Neotropical wildlife use and conservation. University of Chicago Press, Chicago. 520 pp.Google Scholar
NUñEZ-ITURRI, G. 2007. The effects of hunting on the regeneration of trees in mature floodplain forests in southeastern Peru. PhD dissertation. University of Illinois at Chicago, Chicago. 120 pp.Google Scholar
NUÑEZ-ITURRI, G. & HOWE, H. 2007. Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in western Amazonia. Biotropica 39:348354.Google Scholar
OHL-SCHACHERER, J., SHEPARD, G., KAPLAN, H., PERES, C. A., LEVI, T. & YU, D. 2007. The sustainability of subsistence hunting by Matsigenka native communities in Manu National Park, Peru. Conservation Biology 21:11741185.Google Scholar
OSHER, L. J. & BUOL, S. W. 1998. Relationship of soil properties to parent material and landscape position in eastern Madre de Dios, Peru. Geoderma 83:143166.CrossRefGoogle Scholar
PALMINTERI, S., POWELL, G. V. N., ENDO, W., KIRKBY, C. A., YU, D. & PERES, C. A. 2009. Usefulness of species range polygons for predicting local primate occurrences in southeastern Peru. American Journal of Primatology 71:19.Google Scholar
PATTERSON, B. D., CEBALLOS, G., SECHREST, W., TOGNELLI, M. F., BROOKS, T., LUNA, L., ORTEGA, P., SALAZAR, I. & YOUNG, B. E. 2003. Digital distribution maps of the mammals of the western hemisphere, version 1.0. NatureServe, Arlington.Google Scholar
PERES, C. A. 1990. Effects of hunting on western Amazonian primate communities. Biological Conservation 54:4759.Google Scholar
PERES, C. A. 1993. Structure and spatial organization of an Amazonian terra firme forest primate community. Journal of Tropical Ecology 9:259276.Google Scholar
PERES, C. A. 1997. Primate community structure at twenty western Amazonian flooded and unflooded forests. Journal of Tropical Ecology 13:381405.Google Scholar
PERES, C. A. 1999a. General guidelines for standardizing line transect surveys of tropical forest primates. Neotropical Primates 7:1116.Google Scholar
PERES, C. A. 1999b. Nonvolant mammal community structure in different Amazonian forest types. Pp. 564581 in Eisenberg, J. F., Redford, K. H. (eds.). Mammals of the Neotropics. Volume 3. University of Chicago Press, Chicago.Google Scholar
PERES, C. A. 2000. Effects of subsistence hunting on vertebrate community structure in Amazonian forests. Conservation Biology 14:240253.CrossRefGoogle Scholar
PERES, C. A. 2008. Soil fertility and arboreal mammal biomass in tropical forests. Pp. 349364 in Schnitzer, S. & Carson, W. (eds.). Tropical forest community ecology. Blackwell Scientific, Oxford.Google Scholar
PERES, C. A. & DOLMAN, P. 2000. Density compensation in neotropical primate communities: evidence from 56 hunted and nonhunted Amazonian forests of varying productivity. Oecologia 22:175189.Google Scholar
PERES, C. A. & JANSON, C. 1999. Species coexistence, distribution, and environmental determinants of neotropical primate richness: a community-level zoogeographic analysis. Pp. 5574 in Fleagle, J., Janson, C. & Reed, K. (eds.), Primate communities. Cambridge University Press. Cambridge.Google Scholar
PERES, C. A. & PALACIOS, E. 2007. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39:304315.Google Scholar
PHILLIPS, O. L., VARGAS, P. N., MONTEAGUDO, A. L., CRUZ, A. P., ZANS, M. C., SANCHEZ, W. G., YLI-HALLA, M. & ROSE, S. 2003. Habitat association among Amazonian tree species: a landscape-scale approach. Ecology 91:757775.Google Scholar
PHILLIPS, O. L., ROSE, S., MONTEAGUDO, A. L. & VARGAS, P. N. 2006. Resilience of Southwestern Amazon forests to anthropogenic edge effects. Conservation Biology 20:16981710.Google Scholar
PITMAN, N. C., TERBORGH, J. W., SILMAN, M. R., NUNEZ, V. P., NEILL, D. A., CERON, C. E., PALACIOS, W. A. & AULESTIA, M. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82:21012117.Google Scholar
PORTER, L. 2006. Distribution and density of Callimico goeldii in the department of Pando, Bolivia. American Journal of Primatology 68:235246.Google Scholar
PRANCE, G. 1979. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 31:2638.CrossRefGoogle Scholar
RANGEL, T. F., DINIZ-FILHO, J. A. F. & BINI, L. M. 2010. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography 33:4650.CrossRefGoogle Scholar
RÄSÄNEN, M., SALO, J., JUNGNER, H. & ROMERO PITTMAN, L. 1990. Evolution of the western Amazon lowland relief: impact of Andean foreland dynamics. Terra Nova 2:320332.Google Scholar
ROBINSON, J. G. & Redford, K. H. 1986. Intrinsic rate of natural increase in Neotropical forest mammals: relationship to phylogeny and diet. Oecologia 68:516520.Google Scholar
RUOKOLAINEN, K., LINNA, A. & TUOMISTO, H. 1997. Use of Melastomataceae and pteridophytes for revealing phytogeographical patterns in Amazonian rain forests. Journal of Tropical Ecology 13:243256.CrossRefGoogle Scholar
SALO, J., KALLIOLA, R., HÄKKINEN, I., MÄKINEN, Y., NIEMELÄ, P., PUHAKKA, M. & COLEY, P. 1986. River dynamics and the diversity of Amazon lowland forest. Nature 322:254258.CrossRefGoogle Scholar
SOINI, P. 1986. A synecological study of a primate community in the Pacaya-Samiria National Reserve, Peru. Primate Conservation 7:6371.Google Scholar
TERBORGH, J. 1983. Five new world primates: a study in comparative ecology. Princeton University Press, Princeton. 260 pp.Google Scholar
TERBORGH, J. & ANDRESEN, E. 1998. The composition of Amazonian forests: patterns at local and regional scales. Journal of Tropical Ecology 14:645664.Google Scholar
TERBORGH, J., NUÑEZ-ITURRI, G., PITMAN, N., CORNEJO, F., ALVAREZ, P., SWAMY, V., PRINGLE, E. & PAINE, T. 2008. Tree recruitment in an empty forest. Ecology 89:17571768.Google Scholar
THIEME, M., LEHNER, B., ABELL, R., HAMILTON, S. K., KELLNDORFER, J., POWELL, G. & RIVEROS, J. C. 2007. Freshwater conservation planning in data-poor areas: an example from a remote Amazonian basin (Madre de Dios River, Peru and Bolivia). Biological Conservation 135:484501.Google Scholar
TUOMISTO, H., RUOKOLAINEN, K., KALLIOLA, R., LINNA, A., DANJOY, W. & RODRIGUEZ, Z. 1995. Dissecting Amazonian biodiversity. Science 269:6366.Google Scholar
TUOMISTO, H., RUOKOLAINEN, K. & YLI-HALLA, M. 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241244.Google Scholar
VORMISTO, J., SVENNING, J.-C., HALL, P. & BALSLEV, H. 2004. Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. Journal of Ecology 92:577588.Google Scholar