Hostname: page-component-6d856f89d9-xkcpr Total loading time: 0 Render date: 2024-07-16T06:40:39.317Z Has data issue: false hasContentIssue false

Primate community structure at twenty western Amazonian flooded and unflooded forests

Published online by Cambridge University Press:  10 July 2009

Carlos A. Peres
Affiliation:
CSERGE, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK

Abstract

This paper presents data from a standardized series of line-transect censuses on the species and subspecies composition, population density, and crude biomass of western Amazonian primate communities occurring at eight flooded (= vázea) and 12 unflooded (= terra firme) forests. These were located primarily along one of the largest white-water tributaries of the Amazon (= Solimōes), the Juruá river. On average, terra firme forests contained twice as many primate species, lower population densities, and less than half of the total community biomass than did adjacent várzea forests. There was a clear habitat-dependent positive association among primate species, particularly within várzea forests, as well as marked shifts in guild structure between forest types. Species turnover between these two forest types involved primarily understorey insectivores (e.g. Saguinus sp.), which do not occur in seasonally inundated forest. These were consistently replaced by squirrel monkeys (Saimiri sp.), which are extremely abundant in annually flooded várzea forests. Similarly, large-bodied folivores such as red howler monkeys (Alouatta seniculus) were uncommon or rare in terra firme forests, but very abundant in várzea forests, even though they are hunted less intensively in the former than in the latter. This can be largely explained by the nutrient-rich alluvial soils of young floodplains, compared to the heavily weathered terra firme soils occurring even within short distances of major white-water rivers. This study clearly shows a reversed diversity/density pattern resulting from the lower species richness, but high overall community biomass of seasonally flooded Amazonian forests, which can now be generalized for a wide range of terrestrial vertebrate taxa, including amphibians, birds, and several other orders of mammals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Aquino, R. 1988. Preliminary surveys on the population densities of Cacajaocalvus ucayalii. Primate Conservation 9:2426.Google Scholar
Ayres, J. M. 1986. Uakaris and Amazonian flooded forest. Unpublished PhD thesis, University of Cambridge.Google Scholar
Ayres, J. M. 1989. Comparative feeding ecology of the uakari and bearded saki, Cacajao and Chiropotes. Journal of Human Evolution 18:697716.Google Scholar
Ayres, J. M. 1993. As matas de várzea do Mamirauá - médio Rio Solimōes. MCT-CNPq, Programa do Trópico Úmido. Sociedade Civil Mamirauá, Belém.Google Scholar
Balslev, H., Luteyn, J., ØLlgaard, B. & Holm-Nielsen, L. B. 1987. Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Botanica 92:3757.Google Scholar
Bodmer, R. E. 1990. Responses of ungulates to seasonal inundations in the Amazon floodplain. Journal of Tropical Ecology 6:191201.CrossRefGoogle Scholar
Bourliére, F. 1985. Primate communities: their structure and role in tropical ecosystems. International Journal of Primatology 6:126.CrossRefGoogle Scholar
Branch, L. C. 1981. Seasonal and habitat differences in the abundance of primates in the Amazon (Tapajós) National Park, Brazil. Primates 24:424431.Google Scholar
Brockelman, W. Y. & Ali, R. 1987. Methods of surveying and sampling forest primate populations. Pp. 2362 in Marsh, C. W. & Mittermeier, R. A. (eds). Primate conservation in the tropical rain forest. Alan Liss, New York.Google Scholar
Buckland, S. T., Anderson, D. R., Burnham, K. P. & Laake, J. L. 1993. Distance sampling: estimating abundance of biological populations. Chapman & Hall, London.Google Scholar
Burnham, K. P., Anderson, D. R. & Laake, J. L. 1980. Estimation of density from line transect sampling of biological populations. Wildlife Monographs 72:1202.Google Scholar
Campbell, D. G., Stone, J. L. & Rosas, A. 1992. A comparison of the phytosociology and dynamics of three floodplain (várzea) forests of known ages, Rio Juruá, western Brazilian Amazon. Botanical Journal of the Linnean Society 108:213237.CrossRefGoogle Scholar
Carvalho, C. T. 1957. Alguns mamíferos do Acre ocidental. Boletim do Museu Paraense Emílio Goeldi 6:122.Google Scholar
Defler, T. R. 1979. On the ecology and behavior of Cebus albifrons in Eastern Colombia: I. Ecology. Primates 20:475490.CrossRefGoogle Scholar
Defler, T. R. 1994. Callicebus torquatus is not a white-sand specialist. American Journal of Primatology 33:149154.Google Scholar
Duivenvoorden, J. F. & Lips, J. M. 1995. A land-ecological study of soils, vegetation, and plant diversity in Colombia Amazonia. Tropenbos Series 12:1438.Google Scholar
Ford, S. M. & Davies, L. S. 1992. Systematics and body size: implications for feeding adaptations in New World monkeys. American Journal of Physical Anthropology 88:415468.CrossRefGoogle ScholarPubMed
Freese, C. H., Heltne, P. G., Castro, N. & Whitesides, G. 1982. Patterns and determinants of monkey densities in Peru and Bolivia with notes on distributions. International Journal of Primatology 3:5390.Google Scholar
Furch, K. & Klinge, H. 1989. Chemical relationships between vegetation, soil and water in contrasting inundation areas of Amazonia. Pp. 189204 in Proctor, J. (ed.). Mineral nutrients in tropical forest and savanna ecosystems, Blackwell Scientific Publications, Oxford.Google Scholar
Ganzhorn, J. U. 1992. Leaf chemistry and the biomass of folivorous primates in tropical forests. Oecologia 91:540547.CrossRefGoogle ScholarPubMed
Gibbs, R. J. 1967. The geochemistry of the Amazon river system. I. The factors that control the salinity and the composition of suspended soils. Geological Society of America Bulletin 78:12031232.Google Scholar
Herrera, R., Jordan, C. F., Klinge, H. & Medina, E. 1978. Amazon ecosystems: their structure and functioning with particular emphasis on nutrients. Interciencia 3:223231.Google Scholar
Hershkovitz, P. 1990. Titis, New World monkeys of the genus Callicebus (Cebidae, Platyrrhini): a preliminary taxonomic review. Fieldiana (Zoology) 55:1109.Google Scholar
Hill, W. C. O. 1960. Primate comparative anatomy and taxonomy, IV. Cebidae, Part-A. Edinburgh University Press, Edinburgh.Google Scholar
Irion, G. 1978. Soil infertility in the Amazonian rain forest. Naturwissenschaften 65:515519.CrossRefGoogle Scholar
Janson, C. H. & Terborgh, J. 1980. Censo de primates en selva humeda tropical. Publicaciones del Museo de Historia Natural Javier Prado, Serie A, Zootogía 28:139.Google Scholar
Johns, A. D. & Skorupa, J. P. 1987. Responses of rain-forest primates to habitat disturbance: a review. International Journal of Primatology 8:157191.CrossRefGoogle Scholar
Junk, W. R. 1989. Flood tolerance and tree distribution in central Amazon floodplains. Pp. 4764 in Holm-Nielsen, L. B., Nielsen, I. C. & Balslev, H. (eds). Tropical forests: botanical dynamics, speciation and diversity. Academic Press, London.Google Scholar
Kinzey, W. G. & Gentry, A. H. 1979. Habitat utilization in two species of Callicebus. Pp. 89100 in Sussman, R. W. (ed.). Primate ecology: problem-oriented field studies. John Wiley & Sons, New York.Google Scholar
Klinge, H., Furch, K., Harms, E. & Revilla, J. 1983. Foliar nutrient levels of native tree species from Central Amazonia. 1. Inundation forests. Amazoniana 8:1945.Google Scholar
Kubitzki, K. & Ziburski, A. 1994. Seed dispersal in floodplain forests of Amazonia. Biotropica 26:3043.CrossRefGoogle Scholar
Ludwig, J. A. & Reynolds, J. F. 1988. Statistical ecology: a primer on methods and computing. John Wiley & Sons, New York.Google Scholar
Malcolm, J. R., Gascon, C., Patton, J. L., Peres, C. A., & Da Silva, M. N. F. 1992. Ecological and evolutionary significance of Amazonian river barriers. Unpublished Report to the Wildlife Conservation Society, New York.Google Scholar
McKey, D. B., Waterman, P. G., Mbi, C. N., Gartlan, J. S. & Struhsaker, T. T. 1978. Phenolic content of vegetation in two African rain forests: ecological implications. Science 202:6164.CrossRefGoogle Scholar
Mitchell, C. L. 1990. The ecological basis for female social dominance: a behavioral study of the squirrel monkey (Saimiri sciureus) in the wild. Unpublished PhD thesis, Princeton University, Princeton.Google Scholar
Mittermeier, R. A., Rylands, A. B. & Coimbra-Filho, A. F. 1988. Systematics: species and subspecies – an update. Pp. 1375 in Mittermeir, R. A., Rylands, A. B., Coimbra-Filho, A. F. & Fonseca, G. A. B. (eds). Ecology and behavior of neotropical primates, Vol. 2. World Wildlife Fund-US, Washington, D.C.Google Scholar
Oates, J. F., Whitesides, G. H., Davies, A. G., Waterman, P. G., Green, S. M., Dasilva, G. A. & Mole, S. 1990. Determinants of tropical forest primate biomass: new evidence from West Africa. Ecology 71:328343.CrossRefGoogle Scholar
Ollala, A. M. 1938. Um viaje a pesquizas zoológicas: Hacia el Rio Juruá, Estado de Amazonas, Brasil – 1936. Revista do Museu Paulista 22:233297.Google Scholar
Patton, J. L., Da Silva, M. N. F. & Malcolm, J. R. 1994. Gene genealogy and differentiation among arboreal spiny rats (Rodentia: Echimyidae) of the Amazon basin: a test of the riverine barrier hypothesis. Evolution 48:13141323.Google Scholar
Peres, C. A. 1988. Primate community structure in western Brazilian Amazcωnia. Primate Conservation 9:8387.Google Scholar
Peres, C. A. 1989. A survey of a gallery forest primate community, Marajó Island, Pará. Vida Silvestre Neotropical 2:3237.Google Scholar
Peres, C. A. 1990. Effects of hunting on western Amazonian primate communities. Biological Conservation 54:4759.Google Scholar
Peres, C. A. 1993a. Structure and spatial organization of an Amazonian terra firme forest primate community. Journal of Tropical Ecology 9:259276.CrossRefGoogle Scholar
Peres, C. A. 1993b. Notes on the primates of the Juruá River, western Brazilian Amazonia. Folia Primatologica 61:97103.CrossRefGoogle ScholarPubMed
Peres, C. A. 1993c. Notes on the ecology of buffy saki monkeys (Pithecia albicans, Gray 1860): a canopy seed-predator. American Journal of Primatology 31:129140.Google Scholar
Peres, C. A. 1993d. Diet and feeding ecology of saddle-back and moustached tamarins in an Amazonian terra firme forest. Journal of Zoology, London 230:567592.Google Scholar
Peres, C. A. 1994a. Diet and feeding ecology of gray woolly monkeys (Lagothrix lagotricha cana) in central Amazonia: comparisons with other atelines. International Journal of Primatology 15:333372.CrossRefGoogle Scholar
Peres, C. A. 1994b. Primate responses to phenological changes in an Amazonian terra firme forest. Biotropica 26:98112.CrossRefGoogle Scholar
Peres, C. A., Patton, J. L. & Da Silva, M. N. F. 1996. Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatologica 67:113124.Google Scholar
Peres, C. A. 1997. Effects of habitat quality and hunting pressure on arboreal folivore densities in Neotropical forests: a case study of howler monkeys (Alouatta spp.). Folia Primatologica, in press.CrossRefGoogle Scholar
Peres, C. A. in press. Nonvolant mammal community structure in different Amazonian forest types; in Eisenberg, J. F. (ed.). Mammals of the Neotropics, Vol. 3. University of Chicago Press, Chicago.Google Scholar
Pires, J. M. & Prance, G. T. 1985. The vegetation types of the Brazilian Amazon. Pp. 109145 in Prance, G. T. & Lovejoy, T. E. (eds). Key environments: Amazonia. Pergamon Press, Oxford.Google Scholar
Pook, A. G. & Pook, G. 1981. A field study of the socio-ecology of the Goeldi's monkey (Callimico goeldii) in Northern Bolivia. Folia Primatologica 35:288312.CrossRefGoogle ScholarPubMed
Prance, G. T. 1979. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 31:2638.CrossRefGoogle Scholar
Queiroz, H. L. 1995 Preguiças e guaribas: os mamiferos folívoros arborícolas do Mamirauá. MCT-CNPq, Programa do Trópico Umido. Sociedade Civil Mamirauá, Belém.Google Scholar
Remsen, J. V. Jr. & Parker, T. A. III., 1983. Contribution of river-created habitats to bird species richness in Amazonia. Biotropica 15:223231.Google Scholar
Rylands, A. B. 1987. Primate communities in Amazonian forests: their habitats and food sources. Experientia 43:265279.CrossRefGoogle Scholar
Rylands, A. B. & Keuroghlian, A. 1988. Primate populations in continuous forest and forest fragments in central Amazonia: preliminary results. Acta Amazonica 18:291307.Google Scholar
Schluter, D. 1984. A variance test for detecting species associations, with some example applications. Ecology 65:9981005.CrossRefGoogle Scholar
Silva, A. S. L., Lisboa, P. L. B. & Maciel, U. N. 1992. Diversidade florística e estrutura em floresta densa da Bacia do Rio Juruá – AM. Boletin do Museu Paraense Emílio Goeldi, série Botânica 8:203258.Google Scholar
Soini, P. 1986. A synecological study of a primate community in the Pacaya-Samiria National Reserve, Peru. Primate Conservation 7:6371.Google Scholar
Soini, P. 1988. The pygmy marmoset, genus Cebuella. Pp. 79129 in Mittermeier, R. A., Rylands, A. B., Coimbra-Filho, A. & Fonseca, G. A. B. (eds). Ecology and behavior of neotropical primates, Vol. 2. World Wildlife Fund-US, Washington, D.C.Google Scholar
Stevenson, P. R., Quinones, M. J. & Ahumada, J. A. 1994. Ecological strategies of woolly monkeys (Lagothrix lagotricha) at Tinigua National Park, Colombia. American Journal of Primatology 32:123140.CrossRefGoogle ScholarPubMed
Terborgh, J. 1983. Five New World primates: a study in comparative ecology. Princeton University Press, Princeton.Google Scholar
Terborgh, J. & Van Schaik, C. P. 1987. Convergence vs. nonconvergence in primate communites. Pp. 205226 in Gee, J. H. R. & Giller, P. S. (eds). Organization of communities: past and present. Blackwell Scientific Publications, Oxford.Google Scholar
Terborgh, J. & Petren, K. 1991. Development of habitat structure through succession in an Amazonian floodplain forest. Pp. 2846 in Bell, S. S., McCoy, E. D. & Mushinsky, H. R. (eds). Habitat structure: the physical arrangement of objects in space. Chapman & Hall, London.CrossRefGoogle Scholar
Ter Braak, C. J. F. 1988. Canoco – an extension of Decorana to analyse species – environment relationships. Vegetatio 75:159160.CrossRefGoogle Scholar
Vieira, C. O. C. 1948. Novas contribuições ao conhecimento dos mamíferos do Rio Juruá. Boletin do Museu Paraense Emílio Goeldi 10:239274.Google Scholar
Vitousek, P. M. & Sanfords, R. L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17:137167.Google Scholar