Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T22:24:48.219Z Has data issue: false hasContentIssue false

Post-stripping recolonization of vascular epiphytes in cloud-forest fragments in Mexico

Published online by Cambridge University Press:  12 August 2015

Margoth Acuña-Tarazona
Affiliation:
Instituto de Ecología, A.C., Red de Ecología Funcional, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México CP 91070
Tarin Toledo-Aceves*
Affiliation:
Instituto de Ecología, A.C., Red de Ecología Funcional, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México CP 91070
Alejandro Flores-Palacios
Affiliation:
Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biodiversidad y Conservación, Av. Universidad 1001, Chamilpa, Cuernavaca, Morelos, México CP 62209
Vinicio J. Sosa
Affiliation:
Instituto de Ecología, A.C., Red de Ecología Funcional, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México CP 91070
M. Luisa Martínez
Affiliation:
Instituto de Ecología, A.C., Red de Ecología Funcional, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México CP 91070
*
1 Corresponding author. Email: [email protected]

Abstract:

The response of vascular epiphyte communities following natural or human disturbance has been little studied. Over 5 y, we evaluated the post-stripping recolonization of vascular epiphytes in cloud forest. Vascular epiphytes were experimentally removed from branch and trunk plots (1 m in length) on five trees in two secondary cloud forest fragments in southern Mexico. Similarity between colonizer and established communities was compared in each fragment using a further five trees with no stripping. All seedlings were recorded yearly. Non-vascular epiphyte cover was estimated in each plot. The recolonization rate was very high; after 5 y, epiphyte density of the colonizer community (27.4 ± 6.8 individuals per segment) reached similar values to those of the established community (26.7 ± 3.3) in nearby trees. While similarity (composition and abundance) between the colonizer community and established community was high (81%), diversity accumulation curves indicated that the colonizer community presents a lower diversity of epiphytes (5.5 equivalent species) than the established community (11.4). Colonization of xerophytic bromeliads was high, while pteridophytes and orchids presented reduced recovery. The immediately surrounding source of propagules had a strong influence on recolonization. In both the colonizer and established communities, dominance rank was bromeliads > peperomias > pteridophytes. The results show that the recovery capacity of epiphytic vegetation in secondary forest is high, if propagule sources are close by. However, at 5 y after disturbance, it is unclear whether the colonizer community would present the same species composition as the established community or if it would give rise to a different community.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BARTHLOTT, W., SCHMIT-NEUERBURG, V., NIEDER, V. & ENGWALD, S. 2001. Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152:145156.CrossRefGoogle Scholar
BENZING, D. H. 1990. Vascular epiphytes: general biology and related biota. Cambridge University Press, Cambridge. 354 pp.Google Scholar
BENZING, D. H. 1998. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Climatic Change 39:519540.Google Scholar
BØGH, A. 1992. Composition and distribution of the vascular epiphyte flora of an Ecuadorian montane rain forest. Selbyana 13:2534.Google Scholar
CARVAJAL-HERNÁNDEZ, C. I., KRÖMER, T. & VÁZQUEZ-TORRES, M. 2014. Riqueza y composición florística de pteridobiontes en bosque mesófilo de montaña y ambientes asociados en el centro de Veracruz, México. Revista Mexicana de Biodiversidad 85: 491501.Google Scholar
CASCANTE-MARÍN, A., WOLF, J. H. D., OOSTERMEIJER, J. G. B., DEN NIJS, J. C. M., SANAHUJA, O. & DURÁN-APUY, A. 2006. Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. Basic and Applied Ecology 7:520532.Google Scholar
CASCANTE-MARÍN, A., WOLF, J. H. D., OOSTERMEIJER, J. & DEN NIJS, J. 2008. Establishment of epiphytic bromeliads in successional tropical premontane forests in Costa Rica. Biotropica 40:441448.Google Scholar
CATCHPOLE, D. J. & KIRKPATRICK, J. B. 2010. The outstandingly speciose epiphytic flora of a single strangler fig (Ficus crassiuscula) in a Peruvian montane cloud forest. Pp. 355365 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
CHAO, A. & JOST, L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 9:25332547.Google Scholar
CHAO, A., GOTELLI, N. J., HSIEH, T. C., SANDER, E. L., MA, K. H., COLWELL, R. K. & ELLISON, A. M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84:4567.CrossRefGoogle Scholar
COLWELL, R. K., CHAO, A., GOTELLI, N. J., LIN, SY., MAO, C. X., CHAZDON, R. L. & LONGINO, J. T. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5:321.Google Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2004. Effect of isolation on the structure and nutrient content of oak epiphyte communities. Plant Ecology 173:259269.Google Scholar
FLORES-PALACIOS, A. & VALENCIA-DÍAZ, S. 2007. Local illegal trade reveals unknown diversity and involves a high species richness of wild vascular epiphytes. Biological Conservation 136:372387.CrossRefGoogle Scholar
GEREZ, P., FUENTES, T., VIDRIALES, CHAN, G., TOLEDO-ACEVES, T. & PÉREZ, K. 2012. Características sociales y problemática de la subcuenca. Pp. 135189 in Paré, L. & Gerez, P. (eds.). Al Filo del Agua: cogestión de la subcuenca del Pixquiac, Veracruz. Secretaría de Medio Ambiente y Recursos Naturales – Instituto Nacional de Ecología, Mexico.Google Scholar
GHORBANI, A., GRAVENDEEL, B., NAGHIBI, F. & DE BOER, H. 2014. Wild orchid tuber collection in Iran: a wake-up call for conservation. Biodiversity and Conservation 23:27492760.CrossRefGoogle Scholar
GUARIGUATA, M. R. & OSTERTAG, R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148:185206.Google Scholar
HAECKEL, I. 2008. The “Arco Floral”: ethnobotany of Tillandsia and Dasylirion spp. in a Mexican religious adornment. Economic Botany 62:9095.Google Scholar
HIETZ, P. 1997. Population dynamics of epiphytes in a Mexican humid montane forest. Journal of Ecology 85:767775.CrossRefGoogle Scholar
HIETZ, P. 2011. Ecology and ecophysiology of epiphytes in tropical montane cloud forests. Pp. 6776 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management (International Hydrology Series). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
HIETZ, P., AUSSERER, J. & SCHINDLER, G. 2002. Growth, maturation and survival of epiphytic bromeliads in a Mexican humid montane forest. Journal of Tropical Ecology 18:177191.Google Scholar
HIETZ, P., BUCHBERGER, G. & WINKLER, M. 2006. Effect of forest disturbance on abundance and distribution of epiphytic bromeliads and orchids. Ecotropica 12:103112.Google Scholar
HOLBROOK, N. M. 1991. Small plants in high places: the conservation and biology of epiphytes. Trends in Evolution and Ecology 6:314315.Google Scholar
JOST, L. 2006. Entropy and diversity. Oikos 113:363375.CrossRefGoogle Scholar
JOST, L., CHAO, A. & CHAZDON, R. 2011. Composition similarity and β (beta) diversity. Pp. 6684 in Magurran, A. E. & McGill, B. J. (eds.). Biological diversity frontiers in measurement and assessment. Oxford University Press, New York.Google Scholar
KELLY, D. L., TANNER, E. V. J., NIC LUGHADHA, E. M. & KAPOS, V. 1994. Floristics and biogeography of a rain forest in the Venezuelan Andes. Journal of Biogeography 21:223241.Google Scholar
KESSLER, M. 2001. Pteridophyte species richness in Andean forest in Bolivia. Biodiversity and Conservation 10:14731495.Google Scholar
LARREA, M. L. & WERNER, F. A. 2010. Response of vascular epiphyte diversity to different land-use intensities in a Neotropical montane wet forest. Forest Ecology and Management 260:19501955.CrossRefGoogle Scholar
MAGURRAN, A. E. 2004. Measuring biological diversity. Blackwell Science, Oxford. 256 pp.Google Scholar
NADKARNI, N. M. 1984. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249256.Google Scholar
NADKARNI, N. M. 2000. Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, Monteverde, Costa Rica. Biotropica 32:358363.CrossRefGoogle Scholar
NADKARNI, N. M. & MATELSON, T. 1989. Bird use of epiphyte resources in neotropical trees. Condor 69:891907.Google Scholar
NORDEN, N., CHAZDON, R. L., CHAO, A., JIANG, Y. H. & VÍLCHEZ-ALVARADO, B. 2009. Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecology Letters 12:385394.Google Scholar
RODRÍGUEZ-ROBLES, J. A., ACKERMAN, J. & MELÉNDEZ, E. J. 1990. Host distribution and hurricane damage to an orchid population at Toro Negro forest, Puerto Rico. Caribbean Journal of Science 26:163164.Google Scholar
SANFORD, W. 1968. Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. Journal of Ecology 56:697705.Google Scholar
SCHEFFKNECHT, S., WINKLER, M., HÜLBER, K., MATA ROSAS, M. & HIETZ, P. 2012. Seedling establishment of epiphytic orchids in forests and coffee plantations in Central Veracruz, Mexico. Journal of Tropical Ecology 26:93102.CrossRefGoogle Scholar
SCHIPPMANN, U. & ZIZKA, G. 1994. ‘Graue Tillandsien’ – ein Fall für den Arten schutz. Palmengarten 58:129137.Google Scholar
SUBEDI, A., KUNWAR, B., CHOI, Y., DAI, Y., VAN ANDEL, T., CHAUDHARY, R. P., DE BOER, H. J. & GRAVENDEEL, B. 2013. Collection and trade of wild-harvested orchids in Nepal. Journal of Ethnobiology and Ethnomedicine 9:6473.CrossRefGoogle ScholarPubMed
TOLEDO-ACEVES, T., GARCÍA-FRANCO, J. G., HERNÁNDEZ-ROJAS, A. & MACMILLAN, K. 2012a. Recolonization of vascular epiphytes in a shaded coffee agroecosystem. Applied Vegetation Science 15:99107.Google Scholar
TOLEDO-ACEVES, T., GARCÍA-FRANCO, J. G., LANDERO, S., LEÓN, M. M. L. & MACMILLAN, K. 2012b. Germination and seedling survivorship of three Tillandsia species in the cloud-forest canopy. Journal of Tropical Ecology 28:423426.Google Scholar
TOLEDO-ACEVES, T., GARCÍA-FRANCO, J. G. & LÓPEZ-BARRERA, F. 2014a. Bromeliad rain: an opportunity for cloud forest management. Forest Ecology and Management 329:129136.Google Scholar
TOLEDO-ACEVES, T., GARCÍA-FRANCO, J. G., WILLIAMS-LINERA, G., MACMILLAN, K. & GALLARDO, C. 2014b. Significance of remnant cloud forest fragments as reservoirs of tree and epiphytic bromeliad diversity. Tropical Conservation Science 7:230243.Google Scholar
TURNER, I. M., TAN, H. T. W., WEE, Y. C., IBRAHIM, A. B., CHEW, P. T. & CORLETT, R. T. 1994. A study of plant species extinction in Singapore: lessons for the conservation of tropical biodiversity. Conservation Biology 8:705712.Google Scholar
VALENCIA-DÍAZ, S., FLORES-PALACIOS, A., RODRÍGUEZ-LÓPEZ, V. & JIMÉNEZ-APARICIO, A. R. 2012. Effects of Tillandsia recurvata extracts on the seed germination of Tillandsia spp. Allelopathy Journal 29:125136.Google Scholar
WERNER, F. A. & GRADSTEIN, S. R. 2008. Seedling establishment of vascular epiphytes on isolated and enclosed forest trees in an Andean landscape, Ecuador. Biodiversity and Conservation 17:31953207.Google Scholar
WILLIAMS-LINERA, G., MANSON, R. H. & VERA, E. I. 2002. La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México. Madera y Bosque 8:6985.Google Scholar
WINKLER, M., HÜLBER, K. & HIETZ, P. 2005. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest. Annals of Botany 95:10391047.Google Scholar
WOLF, J. H. D. 2005. The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management 212:376393.Google Scholar
YEATON, R. I. & GLADSTONE, D. 1982. The pattern of colonization of epiphytes on calabash trees (Crescentia alata HBK) in Guanacaste province, Costa Rica. Biotropica 14:137140.Google Scholar
ZHU, H., XU, Z. F., WANG, H. & LI, B. G. 2004. Tropical rain forest fragmentation and its ecological and species diversity changes in southern Yunnan. Biodiversity and Conservation 13:13551372.Google Scholar
ZOTZ, G. & BADER, M. Y. 2009. Epiphytic plants in a changing world: global change effects on vascular and non-vascular epiphytes. Progress in Botany 70:147170.Google Scholar