Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T07:47:30.191Z Has data issue: false hasContentIssue false

Plant establishment on flooded and unflooded patches of a freshwater swamp forest in southeastern Brazil

Published online by Cambridge University Press:  10 July 2009

Fábio R. Scarano
Affiliation:
Universidade Federal do Rio de Janeiro, Departamento de Ecologia, IB, CCS, Ilha do Fundāo, 21941–590, Rio de Janeiro RJ, Brazil
Kátia T. Ribeiro
Affiliation:
Universidade Federal do Rio de Janeiro, Departamento de Ecologia, IB, CCS, Ilha do Fundāo, 21941–590, Rio de Janeiro RJ, Brazil
Luiz F. D. de Moraes
Affiliation:
Universidade Federal do Rio de Janeiro, Departamento de Ecologia, IB, CCS, Ilha do Fundāo, 21941–590, Rio de Janeiro RJ, Brazil
Haroldo C. de Lima
Affiliation:
Universidade Federal do Rio de Janeiro, Departamento de Ecologia, IB, CCS, Ilha do Fundāo, 21941–590, Rio de Janeiro RJ, Brazil

Abstract

Plant establishment was studied in a swamp forest in the lowland Atlantic rainforest in southeastern Brazil. A topographic gradient allowed a clear distinction between a periodically flooded and a permanently flooded site in the study area. Both sites were mosaics of patches: the former showed soil patches of varying sizes subject to distinct flooding durations (from 0 to 300 d per year) and in the latter, the tank bromeliads which densely occupied the understorey, trap litter and provided ‘suspended soil’ patches. In the periodically flooded site, the occurrence of regenerants (< 1.0 m tall) of the actively regenerating tree populations of Calophyllum brasiliense, Symphonia globulifera and Tovomitopsis paniculata (all Clusiaceae), originating from seed or vegetative organs, was recorded for 1 m2 quadrats placed in flooded (n = 82) and unflooded (n = 103) patches. In the permanently flooded site, dominated by Tabebuia cassinoides (Bignoniaceae), the presence of germinated seedlings was counted for 400 rosettes of the terrestrial tank bromeliad Nidularium procerum. The results showed that unflooded patches, including tank bromeliads, favoured seedling establishment. However, T. paniculata and T. cassinoides colonize patches where flooding lasts longer or is permanent mostly by reproducing vegetatively, while the seeds of C. brasiliense, which showed no form of vegetative reproduction, and S. globulifera are successful in colonizing flooded patches. Germination tests and field observations indicated that, for C. brasiliense, pre- and post-dispersal seed dormancy, a two-phase seed dispersal (water and bats) and seedling tolerance to flooding accounted for this pattern.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Abrahamson, W. G. 1980. Demography and vegetative reproduction. Pp. 89106 in Solbrig, O. T. (ed.). Demography and evolution in plant populations. Botanical Monographs 15. Blackwell Scientific Publications, Oxford.Google Scholar
Allem, A. C. & Valls, J. F. M. 1987. Recursos forrageiros nativos do Pantanal Matogrossense. Embrapa-Cenargen, Brasília, Brazil. 339 pp.Google Scholar
Aselmann, I. & Crutzen, P. J. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emission. Journal of Atmospheric Chemistry 8:307358.CrossRefGoogle Scholar
Benzing, D. H. 1990. Vascular epiphytes. Cambridge University Press, Cambridge. 354 pp.CrossRefGoogle Scholar
Bittrich, V. & Amaral, M. C. E. 1996. Pollination biology of Symphonia globulifera (Clusiaceae). Plant Systematics and Evolution 200:101110.CrossRefGoogle Scholar
Colwell, R. K. 1974. Predictability, constancy and contingency of periodic phenomena. Ecology 55:11481153.CrossRefGoogle Scholar
Cook, R. 1980. The biology of seeds in the soil. Pp. 107129 in Solbrig, O. T. (ed.). Demography and evolution in plant populations. Botanical Monographs 15. Blackwell Scientific Publications, Oxford.Google Scholar
Crawford, R. M. M. 1989. Studies in plant survival. Blackwell Scientific Publications, Oxford. 296 pp.Google Scholar
Crawford, R. M. M. 1992. Oxygen availability as an ecological limit to plant distribution. Advances in Ecological Research 23:93185.CrossRefGoogle Scholar
Engler, A. 1888. Guttiferae. Flora Brasiliensis 12:381474.Google Scholar
Evans, A. S. & Cabin, R. J. 1995. Can dormancy affect the evolution of post-germination traits? The case of Lesquerella fendleri. Ecology 76:344356.CrossRefGoogle Scholar
Fialho, R. F. 1990. Seed dispersal by a lizard and a treefrog – effect of dispersal site on seed survivorship. Biotropica 22:423424.CrossRefGoogle Scholar
Fialho, R. F. & Furtado, A. L. S. 1993. Germination of Erythroxylum ovalifolium (Erythroxylaceae) seeds within the terrestrial bromeliad Neoregelia omenta. Biotropica 25:359362.CrossRefGoogle Scholar
Garwood, N. C. 1989. Tropical seed banks: a review. Pp. 149209 in Leek, M. A., Parker, V. T. & Simpson, R. L. (eds). Ecology of soil seed banks. Academic Press, London.CrossRefGoogle Scholar
Gentry, A. H. 1992. Bignoniaceae. Part II (Tribe Tecomeae). Flora Neatropica Monograph 25:1370.Google Scholar
IBDF. 1981. Plano de Manejo – Reserva Biológica de Poço das Antas. Brasilia. 59 pp.Google Scholar
Joly, C. A. 1990. Flooding tolerance in tropical trees. Pp. 2334 in Jackson, M. B., Davies, D. D. & Lambers, H. (eds). Plant life under oxygen deprivation. SPB Academic Publishers, The Hague.Google Scholar
Joly, C. A. & Crawford, R. M. M. 1982. Variation in tolerance and metabolic responses to flooding in some tropical trees. Journal of Experimental Botany 33:799809.CrossRefGoogle Scholar
Junk, W. J. 1989. Flood tolerance and tree distribution in Central Amazonian floodplains. Pp. 6572 in Holm-Nielsen, L. B., Nielsen, I. & Balslev, H. (eds). Tropical forests. Academic Press, New York.Google Scholar
Junk, W. J. 1993. Wetlands of tropical South America. Pp. 679739 in Whigham, D. F., Dykyjova, D. & Hejny, S. (eds). Wetlands of the world: I. Inventory, ecology and management. Kluwer Academic Publishers, Dordrecht.Google Scholar
Kozlowski, T. T., Kramer, P. J. & Pallardy, S. G. 1991. The physiological ecology of woody plants. Academic Press, New York. 657 pp.Google Scholar
Kubitzki, K. 1989. The ecogeographical differentiation of Amazonian inundation forests. Plant Systematics and Evolution 162:285304.CrossRefGoogle Scholar
Kubitzki, K. & Ziburski, A. 1994. Seed dispersal in flood plain forests of Amazonia. Biotropica 26:3043.CrossRefGoogle Scholar
Lacerda, L. D., Araújo, D. S. D. & Maciel, N. C. 1993. Dry coastal ecosystems of the tropical Brazilian coast. Pp. 477493 in van der Maarel, E. (ed.). Dry coastal ecosystems: Africa, America, Asia and Oceania. Elsevier, Amsterdam.Google Scholar
Leck, M. A. 1989. Wetland seed banks. Pp. 283305 in Leek, M. A., Parker, V. T. & Simpson, R. L. (eds). Ecology of soil seed banks. Academic Press, London.CrossRefGoogle Scholar
Leitāo Filho, H. F. 1993. Ecologia da Mata Atlântica em Cubatão. Editora Unesp, Editora Unicamp, Sāo Paulo, Brazil. 184 pp.Google Scholar
Loureiro, M. F., Faria, S. M., James, E. K., Pott, A. & Franco, A. A. 1994. Nitrogen-fixing stem nodules of the legume, Discolobium pulchellum Benth. New Phytologist 128:283295.CrossRefGoogle ScholarPubMed
Macedo, M. V. & Monteiro, R. F. 1987. Germinação e desenvolvimento de plântulas em tanque de Neoregelia cruenta (Bromeliaceae) na Restinga de Barra de Maricá, RJ. Simpósio sobre Ecosislemas da Costa Sul e Sudeste Brasileira. Vol. 2:188190. Academia de Ciências do Estado de Sāo Paulo. Brazil. 425 pp.Google Scholar
Marques, M. C. M. 1994. Estudos auto-ecológicos do Guanandi (Calophyllum brasiliense Camb. Clusiaceae) em uma mata ciliar do município de Brotas, SP. Unpublished M.Sc. Dissertation. Unicamp. Campinas. Brazil. 84 pp.Google Scholar
Nascimento, M. T. & Cunha, C. N. 1989. Estrutura e cqmposição florística de urn cambarazal no Pantanal de Poconé-MT. Acta Botanica Brasilica 3:323.CrossRefGoogle Scholar
Oltveira-Filho, A. T. & Ratter, J. A. 1995. A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh Journal of Botany 52:141194.CrossRefGoogle Scholar
Prance, G. T. 1979. Notes on the vegetation of Amazon III. The terminology of Amazonian forest types subject to inundation. Brittonia 31:2638.CrossRefGoogle Scholar
Prance, G. T. & Schaller, G. B. 1982. Preliminary study of some vegetation types of the Pantanal, Mato Grosso, Brazil. Brittonia 34:228251.CrossRefGoogle Scholar
Rees, M. 1994. Delayed germination of seeds: a look at the effect of adult longevity, the timing of reproduction and population age/stage structure. American Naturalist 144:4364.CrossRefGoogle Scholar
Scarano, F. R. & Crawford, R. M. M. 1992. Ontogeny and the concept of anoxia-tolerance: the case of the Amazonian leguminous tree Parkia pendula. Journal of Tropical Ecology 8:349352.CrossRefGoogle Scholar
Scarano, F. R., Cattânio, J. H. & Crawford, R. M. M. 1994. Root carbohydrate storage in young saplings of an Amazonian tidal várzea forest before the onset of the wet season. Acta Botanica Brasilica 8:129139.CrossRefGoogle Scholar
Schupp, E. W. 1995. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. American Journal of Botany 82:399409.CrossRefGoogle Scholar
Smith, L. B. & Downs, R. J. 1979. Bromelioideae (Bromeliaceae). Flora Neotropica Monograph 14:14932142.Google Scholar
Sokal, R. R. & Rohlf, F. J. 1995. Biometry. (3rd edition). W.H. Freeman, New York. 887 pp.Google Scholar
Steege, H. ter. 1994. Flooding and drought tolerance in seeds and seedlings of two Mora species segregated along a soil hydrological gradient in the tropical rain forest of Guyana. Oecologia 100:356367.CrossRefGoogle ScholarPubMed
Worbes, M. 1985. Structural and other adaptations to long-term flooding by trees in Central Amazonia. Amazoniana 9:459484.Google Scholar
World Conservation Monitoring Centre. 1992. Global biodiversity – status of the earth living resources. Chapman & Hall, London. 594 pp.Google Scholar