Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T19:03:44.441Z Has data issue: false hasContentIssue false

Nutrient availability at different altitudes in a tropical montane forest in Ecuador

Published online by Cambridge University Press:  01 July 2008

Nathalie Soethe*
Affiliation:
Department of Plant Nutrition and Fertilization, Humboldt University of Berlin, Albrecht Thaer Weg 4, 14195 Berlin, Germany
Johannes Lehmann
Affiliation:
Department of Crop and Soil Sciences, Cornell University, USA
Christof Engels
Affiliation:
Department of Plant Nutrition and Fertilization, Humboldt University of Berlin, Albrecht Thaer Weg 4, 14195 Berlin, Germany
*
1Corresponding author. Email: [email protected]

Abstract

We measured macronutrient concentrations in soils and leaves of trees, shrubs and herbs at 1900, 2400 and 3000 m in an Ecuadorian tropical montane forest. Foliar N, P, S and K concentrations in trees were highest at 1900 m (21.7, 2.2, 1.9 and 10.0 mg g−1). At 2400 and 3000 m, foliar concentrations of N, P, S and K were similar to nutrient concentrations in tropical trees with apparent nutrient deficiency, as presented in literature. Unlike foliar nutrient concentrations, the amounts of plant-available nutrients in mineral soil were not affected by altitude or increased significantly with increasing altitude. High C:N ratios (25:1 at 2400 m and 34:1 at 3000 m) and C:P ratios (605:1 at 2400 m and 620:1 at 3000 m) in the soil organic layer suggested slow mineralization of plant litter and thus, a low availability of N and P at high altitudes. Foliar N:P ratios were significantly higher at 2400 m (11.3:1) than at 3000 m (8.3:1), indicating that at high altitudes, N supply was more critical than P supply. In conclusion, the access of plants to several nutrients, most likely N, P, S and K, decreased markedly with increasing altitude in this tropical montane forest.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BARRICK, K. A. & SCHOETTLE, A. W. 1996. A comparison of the foliar nutrient status of elfinwood and symmetrically formed tall trees, Colorado Front Range, U.S.A. Canadian Journal of Botany 74:14611475.CrossRefGoogle Scholar
BERGMANN, W. 1993. Ernährungsstörungen bei Kulturpflanzen. Gustav Fischer Verlag, Stuttgart. 835 pp.Google Scholar
BRUIJNZEEL, L. A. & VENEKLAAS, E. J. 1998. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79:39.CrossRefGoogle Scholar
BRUIJNZEEL, L. A., WATERLOO, M. J., PROCTOR, J., KUITERS, A. T. & KOTTERINK, B. 1993. Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the “Massenerhebung” effect. Journal of Ecology 81:145167.CrossRefGoogle Scholar
BUNDY, L. G. & MEISINGER, J. J. 1994. Nitrogen availability indices. Pp. 951984 in Page, L. A. (ed.). Methods of soil analysis. Part 2. Microbiological and chemical properties. SSSA Book series 5. Soil Science Society of America, Madison.Google Scholar
CHAPIN, F. S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11:233260.CrossRefGoogle Scholar
CORDERO, R. A. 1999. Ecophysiology of Cecropia schreberiana saplings in two wind regimes in an elfin cloud forest: growth, gas exchange, architecture and stem biomechanics. Tree Physiology 19:153163.CrossRefGoogle Scholar
DRECHSEL, P. & ZECH, W. 1991. Foliar nutrient levels of broad-leaved tropical trees: a tabular review. Plant and Soil 131:2946.CrossRefGoogle Scholar
EDWARDS, P. J. & GRUBB, P. J. 1977. Studies of mineral cycling in a montane rain forest in New Guinea. I. The distribution of organic matter in the vegetation and soil. Journal of Ecology 65:943969.CrossRefGoogle Scholar
EDWARDS, P. J. & GRUBB, P. J. 1982. Studies of mineral cycling in a montane rain forest in New Guinea. IV. Soil characteristics and the division of mineral elements between the vegetation and soil. Journal of Ecology 70:649666.CrossRefGoogle Scholar
FAO 1988. FAO/Unesco Soil Map of the World, Revised Legend, with corrections and updates. World Soil Resources Report 60, FAO, Rome. Reprinted with updates as Technical paper 20, ISRIC, Wageningen, 1997.Google Scholar
HAN, W. X., FANG, J. Y., GUO, D. L. & ZHANG, Y. 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168:377385.CrossRefGoogle ScholarPubMed
HEINRICHS, H., BRUMSACK, H. J., LOFTFIELD, N. & KÖNIG, N. 1986. Verbessertes Druckaufschlusssystem für biologische und anorganische Materialien. Zeitschrift für Pflanzenernährung und Bodenkunde 149:350353.CrossRefGoogle Scholar
HERTEL, D., LEUSCHNER, C. & HOLSCHER, D. 2003. Size and structure of fine root systems in old-growth and secondary tropical montane forests (Costa Rica). Biotropica 35:143153.Google Scholar
HOCH, G. & KÖRNER, C. 2003. The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:1021.CrossRefGoogle ScholarPubMed
HOMEIER, J. 2004. Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Ph.D. thesis, University of Bielefeld, Germany. 180 pp.Google Scholar
JUNGK, A. O. 2002. Dynamics of nutrient movement at the soil-root interface. Pp. 587616 in Waisel, Y., Eshel, A. & Kafkafi, U. (eds.). Plant roots, the hidden half. (Third edition). Marcel Dekker, New York.CrossRefGoogle Scholar
KITAYAMA, K. & AIBA, S. I. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.CrossRefGoogle Scholar
KOTTKE, I., BECK, A., OBERWINKLER, F., HOMEIER, J. & NEILL, D. 2004. Arbuscular endomycorrhizas are dominant in the organic soil of a neotropical montane cloud forest. Journal of Tropical Ecology 20:16.CrossRefGoogle Scholar
LAWTON, R. O. 1982. Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. American Journal of Botany 69:12241230.CrossRefGoogle Scholar
MCGRODDY, M. E., DAUFRESNE, T. & HEDIN, L. O. 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85:23902401.CrossRefGoogle Scholar
MEHLICH, A. 1984. Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis 15:14091416.CrossRefGoogle Scholar
MOSER, G., HERTEL, D. & LEUSCHNER, C. 2007. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924935.CrossRefGoogle Scholar
MURPHY, J. & RILEY, J. P. 1962. A modified single solution method for phosphate in natural waters. Analytica Chimica Acta 12:162176.Google Scholar
NAVONE, R. 1964. Proposed method for nitrate in potable waters. Journal of the American Water Works Association 56:781783.CrossRefGoogle Scholar
REDFIELD, A. C. 1958. The biological control of chemical factors in the environment. American Scientist 46:205221.Google Scholar
REICH, P. B. & OLEKSYN, J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Science, USA 101:1100111006.CrossRefGoogle ScholarPubMed
RÖDERSTEIN, M., HERTEL, D. & LEUSCHNER, D. 2005. Above- and below-ground litter production in three tropical montane forests in southern Ecuador. Journal of Tropical Ecology 21:483492.CrossRefGoogle Scholar
SCHRUMPF, M., GUGGENBERGER, G., VALAREZO, C. & ZECH, W. 2001. Tropical montane rain forest soils. Development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes. Die Erde 132:4360.Google Scholar
SOETHE, N., LEHMANN, J. & ENGELS, C. 2006. The vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian montane forest. Plant and Soil 286:287299.CrossRefGoogle Scholar
STEWART, C. G. 2000. A test of nutrient limitation in two tropical montane forests using ingrowth cores. Biotropica 32:369373.CrossRefGoogle Scholar
STEVENSON, F. J. & COLE, M. A. 1999. Cycles of soil: carbon, nitrogen, phosphorus, sulphur, and micronutrients. John Wiley and Sons, New York. 637 pp.Google Scholar
TANNER, E. V. J., KAPOS, V., FRESKOS, S., HEALEY, J. R. & THEOBALD, A. M. 1990. Nitrogen and phosphorus fertilization of Jamaican montane forest trees. Journal of Tropical Ecology 6:231238.CrossRefGoogle Scholar
TANNER, E. V. J., KAPOS, V. & FRANCO, W. 1992. Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73:7886.CrossRefGoogle Scholar
TANNER, E. V. J., VITOUSEK, P. M. & CUEVAS, E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:1022.CrossRefGoogle Scholar
TRESEDER, K. & VITOUSEK, P. M. 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946954.CrossRefGoogle Scholar
VANCE, E. D. & NADKARNI, N. M. 1992. Root mass distribution in a moist tropical montane forest. Plant and Soil 142:3139.CrossRefGoogle Scholar
VERHOEVEN, J. T. A., KOERSELMAN, W. & MEULEMAN, A. F. M. 1996. Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relation with atmospheric inputs and management regimes. Trends in Ecology and Evolution 11:494497.CrossRefGoogle ScholarPubMed
VITOUSEK, P. M. & FARRINGTON, H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:6375.CrossRefGoogle Scholar
VITOUSEK, P. M., APLET, G., TURNER, D. & LOCKWOOD, J. J. 1992. The Mauna Loa environmental matrix: foliar and soil nutrients. Oecologia 89:372382.CrossRefGoogle ScholarPubMed
VITOUSEK, P. M., WALKER, L. R., WHITEAKER, L. D. & MATSON, P. A. 1993. Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeochemistry 23:197215.CrossRefGoogle Scholar
VITOUSEK, P. M., TURNER, D. R. & KITAYAMA, K. 1995. Foliar nutrients during long-term soil development in Hawaiian montane rain forests. Ecology 76:712720.CrossRefGoogle Scholar
WEGNER, C., WUNDERLICH, M., KESSLER, M. & SCHAWE, M. 2003. Foliar C:N ratio of ferns along an Andean elevational gradient. Biotropica 35:486490.CrossRefGoogle Scholar
WILCKE, W., YASIN, S., ABRAMOWSKI, U., VALAREZO, C. & ZECH, W. 2002. Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. European Journal of Soil Science 53:1527.CrossRefGoogle Scholar
WILCKE, W., SCHMIDT, A., HOMEIER, J., VALAREZO, C. & ZECH, W. (in press). Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. Journal of Plant Nutrition and Soil Science.Google Scholar