Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T07:50:21.527Z Has data issue: false hasContentIssue false

A null-model analysis of the spatio-temporal distribution of earthworm species assemblages in Colombian grasslands

Published online by Cambridge University Press:  01 July 2009

Thibaud Decaëns*
Affiliation:
Laboratoire d'Ecologie – EA 1293 ECODIV, UFR Sciences et Techniques, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
Juan José Jiménez
Affiliation:
Instituto Pirenaico de Ecología-CSIC, Avda. Regimiento Galicia, s/n. E-22700, Jaca (Huesca), Spain
Jean-Pierre Rossi
Affiliation:
INRA – UMR BIOGECO, Domaine de l'Hermitage Pierroton, 69 route d'Arcachon, F-33612 Cestas, France
*
1Corresponding author. Email: [email protected]

Abstract:

Earthworm assemblages are usually spatio-temporally structured in mosaics of patches with different species composition. We re-analysed results of past research carried out in Eastern Colombia to explore how interspecific competition accounts for this pattern. In three sown pastures and three native savannas, density data matrices were obtained from spatially explicit samplings at several successive dates, and spatio-temporal patterns of species assemblages were described through partial triadic analyses and geostatistics. This first analysis detected assemblage patchiness in the six plots at spatial scales ranging from 6 to 33 m. Species richness ranged from 5 to 6 species per plot. Null models were further used to analyse niche overlap and morphometric distribution patterns at two different scales, i.e. at the ‘plot level’ and the ‘patch level’. Seasonal and vertical niche overlaps were higher than expected by chance at both scales, indicating high environmental constraints on assemblage membership. Within-patch overlaps were lower than plot-scale overlaps. Biometric niche overlap was random at the plot level and was weakly lower than that expected by chance in patches. Body weight was significantly overdispersed and constant whatever the scale, while body length and diameter showed a similar trend within patches. These results suggest that earthworms form distinct assemblages within patches, mainly driven by deterministic responses to competition: ecologically similar species avoid competition through spatial segregation, whereas a minimal level of ecological segregation is required to allow co-existence in a given patch.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALBRECHT, M. & GOTELLI, N. J. 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia 126:134141.CrossRefGoogle ScholarPubMed
BARKER, G. M. & MAYHILL, P. C. 1999. Patterns of diversity and habitat relationships in terrestrial mollusc communities of the Pukeamaru Ecological District, northeastern New Zealand. Journal of Biogeography 26:215238.CrossRefGoogle Scholar
BAROT, S., ROSSI, J.-P. & LAVELLE, P. 2007. Self-organization in a simple consumer-resource system, the example of earthworms. Soil Biology and Biochemistry 39:22302240.Google Scholar
BLANCHART, E., LAVELLE, P., BRAUDEAU, E., LE BISSONNAIS, Y. & VALENTIN, C. 1997. Regulation of soil structure by geophagous earthworm activities in humid savannas of Côte d'Ivoire. Soil Biology and Biochemistry 29:431439.Google Scholar
BOUCHÉ, M. B. 1977. Statégies lombriciennes. Pp. 122132 in Lohm, U. & Persson, T. (eds.). Soil organisms as components of ecosystems. Ecological Bulletin, Stockholm.Google Scholar
BOYD, J. M. 1957. Comparative aspects of the ecology of Lumbricidae on grazed and ungrazed natural maritime grassland. Oikos 8:107121.CrossRefGoogle Scholar
BRANDL, R. & TOPP, W. 1985. Size structure of Pterostichus spp. (Carabidae): aspects of competition. Oikos 44:234238.CrossRefGoogle Scholar
BROWN, W. L. & WILSON, E. O. 1956. Character displacement. Systematic Zoology 5:4964.CrossRefGoogle Scholar
CHIBA, S. 2004. Ecological and morphological patterns in communities of land snails of the genus Mandarina from the Bonin Islands. Journal of Evolutionary Biology 17:131143.CrossRefGoogle ScholarPubMed
CONNELL, J. H. 1983. On the prevalence and relative importance of interspecific competition: evidence from field experiments. American Naturalist 122:661696.CrossRefGoogle Scholar
CURRY, J. P. & SCHMIDT, O. 2007. The feeding ecology of earthworms – a review. Pedobiologia 50:463477.CrossRefGoogle Scholar
DALBY, P. R., BAKER, G. H. & SMITH, S. E. 1998. Competition and cocoon consumption by the earthworm Aporrectodea longa. Applied Soil Ecology 10:127136.CrossRefGoogle Scholar
DARWIN, C. 1881. The formation of vegetable mould through the action of worms with observations of their habits. Murray, London. 153 pp.CrossRefGoogle Scholar
DAYAN, T. & SIMBERLOFF, D. 2005. Ecological and community-wide character displacement: the next generation. Ecology Letters 8:875894.CrossRefGoogle Scholar
DECAËNS, T. 1999. Rôle fonctionnel et réponses aux pratiques agricoles des vers de terre et autres ingénieurs écologiques dans les savanes colombiennes. Doctoral thesis, Université Paris VI – Pierre et Marie Curie. 374 pp.Google Scholar
DECAËNS, T. & JIMÉNEZ, J. J. 2002. Earthworm communities under an agricultural intensification gradient in Colombia. Plant and Soil 240:133143.CrossRefGoogle Scholar
DECAËNS, T. & ROSSI, J. P. 2001. Spatio-temporal structure of earthworm community and soil heterogeneity in a tropical pasture. Ecography 24:671682.CrossRefGoogle Scholar
DECAËNS, T., MARGERIE, P., HEDDE, M. & BUREAU, F. 2008. Assembly rules within earthworm communities in North-Western France – a regional analysis. Applied Soil Ecology 39:321335.Google Scholar
DIAMOND, J. M. 1975. Assembly of species communities. Pp. 342444 in Cody, M. L. & Diamond, J. M. (eds.). Ecology and evolution of communities. Harvard University Press, Cambridge.Google Scholar
ETTEMA, C. H. & WARDLE, D. A. 2002. Spatial soil ecology. Trends in Ecology and Evolution 17:177183.CrossRefGoogle Scholar
ETTEMA, C. H., RATHBUN, S. L. & COLEMAN, D. C. 2000. On spatiotemporal patchiness and the coexistence of five species of Chronogaster (Nematoda: Chronogasteridae) in a riparian wetland. Oecologia 125:444452.CrossRefGoogle Scholar
FEELEY, K. 2003. Analysis of avian communities in Lake Guri, Venezuela, using multiple assembly rule models. Oecologia 137:104113.CrossRefGoogle ScholarPubMed
FEINSINGER, P., SPEARS, E. E. & POOLE, R. W. 1981. A simple measure of niche breadth. Ecology 62:2732.CrossRefGoogle Scholar
FRAGOSO, C. & ROJAS, P. 1997. Size shift in the Mexican earthworm species Balanteodrilus pearsei (Megascolecidae, Acanthodrilini): a possible case of character displacement. Soil Biology and Biochemistry 29:237240.CrossRefGoogle Scholar
GARNER, P. 1996. Microhabitat use and diet of 0+ cyprinid fishes in a lentic, regulated reach of the River Great Ouse England. Journal of Fish Biology 48:367382.CrossRefGoogle Scholar
GOLDBERG, D. E. & BARTON, A. M. 1992. Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants. American Naturalist 139:771801.CrossRefGoogle Scholar
GOTELLI, N. J. 2001. Research frontiers in null model analysis. Global Ecology and Biogeography 10:337343.Google Scholar
GOTELLI, N. J. & ELLISON, A. M. 2002. Assembly rules for New England ant assemblages. Oikos 99:591599.Google Scholar
GOTELLI, N. J. & GRAVES, G. R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC. 368 pp.Google Scholar
GOTELLI, N. J. & McCABE, D. J. 2002. Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology 83:20912096.Google Scholar
GRUDEMO, J. & JOHANNESSON, K. 1999. Size of mudsnails, Hydrobia ulvae (Pennant) and H. ventrosa (Montagu), in allopatry and sympatry: conclusions from field distributions and laboratory growth experiments. Journal of Experimental Marine Biology and Ecology 239:167181.CrossRefGoogle Scholar
GUILD, W. J. M. 1951. The distribution and population density of earthworms (Lumbricidae) in Scottish pasture fields. Journal of Animal Ecology 20:8897.CrossRefGoogle Scholar
HAKKARAINEN, H. & KORPIMAEKI, E. 1996. Competitive and predatory interactions among raptors: an observational and experimental study. Ecology 77:11341142.Google Scholar
HASTINGS, A., BYERS, J. E., CROOKS, J. A., CUDDINGTON, K., JONES, C. G., LAMBRINOS, J. G., TALLEY, T. S. & WILSON, W. G. 2007. Ecosystem engineering in space and time. Ecology Letters 10:153164.CrossRefGoogle ScholarPubMed
HENDRIX, P. F., BAKER, G. H., CALLAHAM, M. A., DAMOFF, G. A., FRAGOSO, C., GONZALEZ, G., JAMES, S. W., LACHNICHT, S. L., WINSOME, T. & ZOU, X. 2006. Invasion of exotic earthworms into ecosystems inhabited by native earthworms. Biological Invasions 8:12871300.CrossRefGoogle Scholar
HERNÁNDEZ, P., FERNÁNDEZ, R., NOVO, M., TRIGO, D. & DÍAZ-COSÍN, D. J. 2007. Geostatistical and multivariate analysis of the horizontal distribution of an earthworm community in El Molar (Madrid, Spain). Pedobiologia 51:1321.CrossRefGoogle Scholar
HOFER, U., BERSIER, L. F. & BORCARD, D. 2004. Relating niche and spatial overlap at the community level. Oikos 106:366376.CrossRefGoogle Scholar
HUTCHINSON, G. E. 1959. Homage to Santa Rosalia of why are there so many kinds of animals? American Naturalist 93:145159.CrossRefGoogle Scholar
JIMÉNEZ, J. J. 1999. Dinámica de las poblaciones y estructura de las comunidades de lombrices de tierra de las sabanas naturales y perturbadas de los Llanos Orientales de Colombia. Doctoral Thesis, Universidad Complutense de Madrid, Madrid. 311 pp.Google Scholar
JIMÉNEZ, J. J. & DECAËNS, T. 2000. Vertical distribution of earthworms in grassland soils of the Colombian Llanos. Biology and Fertility of Soils 32:463473.CrossRefGoogle Scholar
JIMÉNEZ, J. J. & ROSSI, J. P. 2006. Spatial dissociation between two endogeic earthworms in the Colombian “Llanos”. European Journal of Soil Biology 42:S218224.CrossRefGoogle Scholar
JIMÉNEZ, J. J., MORENO, A. G., LAVELLE, P. & DECAËNS, T. 1998a. Population dynamics and adaptive strategies of Martiodrilus carimaguensis (Oligochaeta, Glossoscolecidae), a native species from the well-drained savannas of Colombia. Applied Soil Ecology 9:153160.Google Scholar
JIMÉNEZ, J. J., MORENO, A. G., DECAËNS, T., LAVELLE, P., FISHER, M. & THOMAS, R. J. 1998b. Earthworm communities in native savannas and man-made pastures of the Eastern Plains of Colombia. Biology and Fertility of Soils 28:101110.Google Scholar
JIMÉNEZ, J. J., BROWN, G. G., DECAËNS, T., FEIJOO, A. & LAVELLE, P. 2000. Differences in the timing of diapause and patterns of aestivation in tropical earthworms. Pedobiologia 44:677694.Google Scholar
JIMÉNEZ, J. J., ROSSI, J. P. & LAVELLE, P. 2001. Spatial distribution of earthworms in acid-soil savannas of the eastern plans of Colombia. Applied Soil Ecology 17:267278.Google Scholar
JIMÉNEZ, J. J., DECAËNS, T. & ROSSI, J. P. 2006a. Stability of the spatio-temporal distribution and niche overlap in neotropical earthworm assemblages. Acta Oecologica 30:299311.CrossRefGoogle Scholar
JIMÉNEZ, J. J., LAVELLE, P. & DECAËNS, T. 2006b. The efficiency of soil hand-sorting in assessing the abundance and biomass of earthworm communities. Its usefulness in population dynamics and cohort analysis studies. European Journal of Soil Biology 42:S225S230.CrossRefGoogle Scholar
JONES, C. G., LAWTON, J. H. & SHACHAK, M. 1994. Organisms as ecosystem engineers. Oikos 69:373386.CrossRefGoogle Scholar
KEDDY, P. A. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157164.CrossRefGoogle Scholar
KEDDY, P. A. & WEIHER, E. 1999. The scope and goals of research on assembly rules. Pp. 120 in Weiher, E. & Keddy, P. A. (eds.). Ecological assembly rules. Perspectives, advances, retreats. Cambridge University Press, Cambridge.Google Scholar
KROONENBERG, P. M. 1989. The analysis of multiple tables in factorial ecology. III. Three mode principal component analysis: “analyse triadique complète”. Acta Oecologica 10:245256.Google Scholar
LAVELLE, P. 1981. Statégies de reproduction chez les vers de terre. Acta Œcologica Œcologia Generalis 2:117133.Google Scholar
LAVELLE, P. 1996. Diversity of soil fauna and ecosystem function. Biology International 33:316.Google Scholar
LAVELLE, P. 1997. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research 27:93132.CrossRefGoogle Scholar
LAVELLE, P. 2002. Functional domains in soils. Ecological Research 17:441450.CrossRefGoogle Scholar
LAVELLE, P. & SPAIN, A. V. 2001. Soil ecology. Kluwer Academic Publishers, Dordrecht. 654 pp.Google Scholar
LAVELLE, P., DECAËNS, T., AUBERT, M., BAROT, S., BLOUIN, M., BUREAU, F., MARGERIE, P., MORA, P. & ROSSI, J. P. 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42:S3S15.CrossRefGoogle Scholar
LEGENDRE, P. & FORTIN, M. J. 1989. Spatial pattern and ecological analysis. Vegetatio 80:107138.CrossRefGoogle Scholar
LOWE, C. N. & BUTT, K. R. 2003. Influence of food particle size on inter- and intra-specific interactions of Allolobophora chlorotica (Savigny) and Lumbricus terrestris. Pedobiologia 47:574577.Google Scholar
MACARTHUR, R. H. & LEVINS, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 10:377385.Google Scholar
MARCHINKO, K. B., NISHIZAKI, M. T. & BURNS, K. C. 2004. Community-wide character displacement in barnacles: a new perspective for past observations. Ecology Letters 7:114120.CrossRefGoogle Scholar
MARGERIE, P., DECAËNS, T., BUREAU, F. & ALARD, D. 2001. Spatial distribution of earthworm species assemblages in a chalky slope of the Seine Valley (Normandy, France). European Journal of Soil Biology 37:291296.CrossRefGoogle Scholar
MARIANI, L., BERNIER, N., JIMÉNEZ, J. J. & DECAËNS, T. 2001. Régime alimentaire d'un ver de terre anécique des savanes colombiennes: une remise en question des types écologiques. Comptes Rendus de l'Académie des Sciences de Paris. Série III – Sciences de la Vie 324:733742.Google Scholar
MATSUMURA, M., TRAFELET-SMITH, G. M., GRATTON, C., FINKE, D. L., FAGAN, W. F. & DENNO, R. F. 2004. Does intraguild predation enhance predator performance? A stoichiometric perspective. Ecology 85:26012615.CrossRefGoogle Scholar
NIPPERESS, D. A. & BEATTIE, A. J. 2004. Morphological dispersion of Rhytidoponera assemblages: the importance of spatial scale and null model. Ecology 85:27282736.Google Scholar
NUUTINEN, V., PITKÄNEN, J., KUUSELA, E., WIDBOM, T. & LOHILAHTI, H. 1998. Spatial variation of an earthworm community related to soil properties and yield in a grass–clover field. Applied Soil Ecology 8:8594.Google Scholar
PHILLIPSON, J., ABEL, A., STEEL, J. & WOODELL, S. R. J. 1976. Earthworms and the factors governing their distribution in an English beechwood. Pedobiologia 16:258285.CrossRefGoogle Scholar
PIANKA, E. R. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics 4:5374.Google Scholar
PIELOU, D. P. & PIELOU, E. C. 1968. Association among species in infrequent occurrence: the insect and spider fauna of Polyporus betulinus (Bulliard) Fries. Journal of Theoretical Biology 21:202216.CrossRefGoogle ScholarPubMed
POIER, K. R. & RICHTER, J. 1992. Spatial-distribution of earthworms and soil properties in an arable loess soil. Soil Biology and Biochemistry 24:16011608.Google Scholar
POLIS, G. A. & MCCORMICK, S. J. 1987. Intraguild predation and competition among desert scorpions. Ecology 68:332343.CrossRefGoogle Scholar
ROSSI, J. P. 2003. The spatiotemporal pattern of a tropical earthworm species assemblage and its relationship with soil structure. Pedobiologia 47:497503.Google Scholar
ROSSI, J. P. & LAVELLE, P. 1998. Earthworm aggregation in the savanna of Lamto (Côte d'Ivoire). Applied Soil Ecology 7:195199.Google Scholar
ROSSI, J. P. & NUUTINEN, V. 2004. The effect of sampling unit size on the perception of the spatial pattern of earthworm (Lumbricus terrestris L.) middens. Applied Soil Ecology 27:189196.Google Scholar
ROSSI, J. P., LAVELLE, P. & ALBRECHT, A. 1997. Relationships between spatial pattern of the andogeic earthworm Polypheretima elongata and soil heterogeneity. Soil Biology and Biochemistry 29:485488.CrossRefGoogle Scholar
ROUDEBUSH, R. E. & TAYLOR, D. H. 1987. Behavioral interactions between two desmognathine salamander species: importance of competition and predation. Ecology 68:14531458.CrossRefGoogle Scholar
SATOH, A., UEDA, T., ENOKIDO, Y. & HORI, M. 2003. Patterns of species assemblages and geographical distributions associated with mandible size differences in coastal tiger beetles in Japan. Population Ecology 45:6774.CrossRefGoogle Scholar
SCHOENER, T. W. 1974. Resource partitioning in ecological communities. Science 185:2739.CrossRefGoogle ScholarPubMed
SOKAL, R. R. & ODEN, N. L. 1978. Spatial autocorrelation in biology. 1. Methodology. Biological Journal of the Linnean Society 10:199228.Google Scholar
SOKAL, R. R. & ROHLF, F. J. 1995. Biometry: the principles and practice of statistics in biological research (third edition). W. H. Freeman and Company, New York.Google Scholar
SOTA, T., TAKAMI, Y., KUBOTA, K., UJIIE, M. & ISHIKAWA, R. 2000. Interspecific body size differentiation in species assemblages of the carabid subgenus Ohomopterus in Japan. Population Ecology 42:279291.CrossRefGoogle Scholar
SPOONER, A., PRIBIL, S. & PICMAN, J. 1996. Why do gray catbirds destroy eggs in nests of other birds? Experimental tests of alternative hypotheses. Canadian Journal of Zoology 74:16881695.Google Scholar
THIOULOUSE, J. & CHESSEL, D. 1987. Les analyses multitableaux en écologie factorielle. I. De la théorie d'état à la typologie de fonctionnement par l'analyse triadique. Acta Œcologica Œcologia Generalis 8:463480.Google Scholar
THIOULOUSE, J., CHESSEL, D., DOLÉDEC, S. & OLIVIER, J. M. 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7:7583.CrossRefGoogle Scholar
WARDLE, D. A. 2002. Communities and ecosystems – linking the aboveground and belowground components. Princeton University Press, Princeton.Google Scholar
WEIHER, E. & KEDDY, P. A. 1995. Assembly rules, null models, and trait dispersions: new questions from old patterns. Oikos 74:159164.Google Scholar
WEIHER, E., CLARKE, G. D. P. & KEDDY, P. A. 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81:309322.CrossRefGoogle Scholar
WHALEN, J. K. & COSTA, C. 2003. Linking spatio-temporal dynamics of earthworm populations to nutrient cycling in temperate agricultural and forest ecosystems. Pedobiologia 47:801806.Google Scholar
WILSON, J. B. & HABIBA, G. 1995. Limitation to species coexistence: evidence for competition from field observations, using a patch model. Journal of Vegetation Science 6:369376.CrossRefGoogle Scholar