Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T23:21:20.440Z Has data issue: false hasContentIssue false

Nitrogen availability is not affected by frequent fire in a South African savanna

Published online by Cambridge University Press:  01 November 2008

Corli Coetsee*
Affiliation:
Department of Botany, University of Cape Town, Rondebosch, 7701, South Africa
Edmund C. February
Affiliation:
Department of Botany, University of Cape Town, Rondebosch, 7701, South Africa
William J. Bond
Affiliation:
Department of Botany, University of Cape Town, Rondebosch, 7701, South Africa
*
1Corresponding author. Email: [email protected]

Abstract:

There is a perception that sustained frequent fires cause nitrogen limitation over the long term (50–100 y) by volatilizing the nitrogen in soil, plant biomass and litter. Here we test this perception in a South African savanna located in the Kruger National Park. At our study site we compare the effects of 50 y of fire exclusion, season (August and February) and frequency (triennial and annual August and triennial February) of burn on nitrogen cycling and availability. We do this using three different methods to determine nitrogen mineralization; in situ incubations, laboratory incubations and ion-exchange resin bags. On each treatment we established two parallel transects 100 m apart with 10 sampling points per treatment along these transects. Daily mineralization rates for in situ incubations were determined monthly from August 2004 to June 2005 at each of the sampling points. Ion-exchange resin bags were buried (5 cm) at the same points and left in the field from August 2004 to August 2005. In February 2005 five randomly located soil samples from each of the four treatments were collected for laboratory incubations using a 7-cm-diameter soil auger. Regardless of method used our results show that there are no significant differences in daily nitrogen mineralization rates after 50 y of different burning treatments from annual burning to fire exclusion. In fact, both in situ and laboratory incubations show that nitrogen availability is higher on the annual burn than the fire exclusion (0.16 μg g−1 soil d−1 vs. 0.11 μg g−1 soil d−1 and 0.46 μg g−1 soil d−1 vs. 0.30 μg g−1 soil d−1 respectively). Perceived negative effects of fire on ecosystem functioning has curbed the use of fire as a management tool with fire often actively suppressed in savanna. The results of our study show that fire can be used more vigorously in mesic African savanna to manipulate tree:grass ratios without negatively affecting the nitrogen cycle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABBADIE, L., MARIOTTO, A. & MENAUT, J. C. 1992. Independence of savanna grasses from soil organic matter for their nitrogen supply. Ecology 73:608613.CrossRefGoogle Scholar
ABBADIE, L., GIGNOUX, J., LEPAGE, M. & LE ROUX, X. 2006. Environmental constraints on living organisms. Pp. 4557 in Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. (eds.). Lamto: structure, functioning and dynamics of a savanna system. Springer, New York.CrossRefGoogle Scholar
ADAMS, M. A. & ATTIWILL, P. M. 1986. Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia: nutrient cycling and nutrient turnover. Plant and Soil 92:319339.CrossRefGoogle Scholar
ALDOUS, A. E. 1934. Effect of burning on Kansas bluestem pastures. Kansas Agricultural Experimental Station Technical Bulletin 38:165.Google Scholar
ANDERSON, R. H., FUHLENDORF, S. D. & ENGLE, D. M. 2006. Soil nitrogen availability in tallgrass prairie under the fire-grazing interaction. Rangeland Ecology and Management 59:625631.CrossRefGoogle Scholar
ARANIBAR, J. N., MACKO, S. A., ANDERSON, I. C., POTGIETER, A. L. F., SOWRY, T. & SHUGART, H. H. 2003. Nutrient cycling responses to fire frequency in the Kruger National Park (South Africa) as indicated by stable isotope analysis. Isotopes Environmental Health Studies 39:141158.CrossRefGoogle ScholarPubMed
BARTON, J. M., BRISTOW, J. W. & VENTER, F. J. 1986. A summary of the Precambrian granitoid rocks of the Kruger National Park. Koedoe 29:3944.CrossRefGoogle Scholar
BIGGS, R., BIGGS, H. C., DUNNE, T. T., GOVENDER, N. & POTGIETER, A. L. F. 2003. Experimental burn plot trial in the Kruger National Park: history, experimental design, and suggestions for data analysis. Koedoe 46:115.CrossRefGoogle Scholar
BINKLEY, D. & MATSON, P. A. 1983. Disturbance, N availability, and nitrogen losses in an intensively managed loblolly pine plantation. Ecology 66:13601376.Google Scholar
BINKLEY, D., ABER, J., PASTOR, J. & NADELHOFFER, K. 1986. Nitrogen availability in some Wisconsin forests: comparisons of resin bags and on-site incubations. Biology and Fertility of Soils 2:7782.Google Scholar
BLAIR, J. M. 1997. Fire, N availability, and plant response in grasslands: a test of the transient maxima hypothesis. Ecology 78:23592368.CrossRefGoogle Scholar
BOND, W. J. & VAN WILGEN, B. W. 1996. Fire and plants. Chapman and Hall, London. 263 pp.CrossRefGoogle Scholar
BOND, W. J., WOODWARD, F. I. & MIDGLEY, G. F. 2005. The global distributions of ecosystem in a world without fire. New Phytologist 165:525538.CrossRefGoogle Scholar
BRIGGS, J. M. & KNAPP, A. K. 1995. Interannual variability in primary production in tallgrass prairie: climate, soil, moisture, topographic position, and fire as determinants of above-ground biomass. American Journal of Botany 82:10241030.Google Scholar
COVINGTON, W. W & SACKETT, S. S. 1986. Effects of periodic burning on soil nitrogen concentrations in Ponderosa pine. Soil Science Society of America Journal 50:452457.CrossRefGoogle Scholar
DIATLOFF, E. & RENGEL, Z. 2001. Compilation of simple spectrophotometric techniques for the determination of elements in nutrient solutions. Journal of Plant Nutrition 24:7586.CrossRefGoogle Scholar
DIJKSTRA, F. A., WRAGE, K., HOBBIE, S. E. & REICH, P. B. 2006. Tree patches show greater N losses but maintain higher soil N availability than grassland patches in a frequently burned Oak savanna. Ecosystems 9:441452.CrossRefGoogle Scholar
EITEN, G. 1992. How names are used for vegetation. Journal of Vegetation Science 3:419424.CrossRefGoogle Scholar
FYNN, R. W. S., HAYNES, R. J. & O'CONNOR, T. G. 2003. Burning causes long-term changes in soil organic matter content of a South African grassland. Soil Biology and Biochemistry 35:677687.CrossRefGoogle Scholar
GERTENBACH, W. P. D. 1983. Landscapes of the Kruger National Park. Koedoe 26:9121.CrossRefGoogle Scholar
GROGAN, P., BURNS, T. D. & CHAPIN, F. S. 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537544.CrossRefGoogle Scholar
HIGGINS, S. I., BOND, W. J., FEBRUARY, E. C., BRONN, A., EUSTON-BROWN, D. I. W., ENSLIN, B., GOVENDER, N., RADEMAN, L., O'REGAN, S., POTGIETER, A. L. F., SCHEITER, S., SOWRY, R., TROLLOPE, L. & TROLLOPE, W. S. W. 2007. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88:11191125.CrossRefGoogle ScholarPubMed
HOBBS, N. T., SCHIMEL, D. S., OWENSBY, C. E. & OJIMA, D. S. 1991. Fire and grazing in the tallgrass prairie: contingent effects on nitrogen budgets. Ecology 72:13741382.CrossRefGoogle Scholar
HOFFMANN, W. A., ORTHEN, B. & VARGAS, DO, NASCIMENTO, P. K. 2003. Comparative fire ecology of tropical savanna and forest trees. Functional Ecology 17: 720726.CrossRefGoogle Scholar
ISICHEI, A. O. 1980. Nitrogen fixation by blue-green algal soil crusts in Nigerian savanna. Pp. 191198 in Rosswall, T. (ed.). Nitrogen cycling in West African ecosystems. SCOPE/UNEP/Royal Swedish Academy of Sciences, Stockholm.Google Scholar
JARRELL, W. M., ARMSTRONG, D. E., GRIGAL, D. F., KELLY, E. F., MONGER, H. C. & WEDIN, D. A. 1999. Soil water and temperature status. Pp. 5573 in Robertson, G. P., Coleman, D. C., Bledsoe, C. S. & Sollins, P. (eds.). Standard soil methods for long-term ecological research. Oxford University Press, New York.Google Scholar
JENSEN, M., MICHELSEN, A. & GASHAW, M. 2001. Responses in plant, soil inorganic and microbial nutrient pools to experimental fire, ash and biomass addition in a woodland savanna. Oecologia 128:8593.CrossRefGoogle Scholar
JOHNSON, L. C. & MATCHETT, J. R. 2001. Fire and grazing regulate belowground processes in tallgrass prairie. Ecology 82:33773389.CrossRefGoogle Scholar
JONES, C. L., SMITHERS, N. L., SCHOLES, M. C. & SCHOLES, R. J. 1990. The effect of fire frequency on the organic components of a basaltic soil in the Kruger National Park. South African Journal for Plant and Soil 7:236238.Google Scholar
KAUFFMAN, J. B., CUMMINGS, D. L. & WARD, D. E. 1994. Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. Journal of Ecology 82:519531.CrossRefGoogle Scholar
KAYE, J. P. & HART, S. C. 1998. Ecological restoration alters nitrogen transformations in a ponderosa pine-bunchgrass ecosystem. Ecological Applications 8:10521060.Google Scholar
KNAPP, A. K., BRIGGS, J. M., BLAIR, J. M. & TURNER, C. L. 1998. Patterns and controls of aboveground net primary production in tallgrass prairie. Pp. 193221 in Knapp, A. K., Briggs, J. M., Hartnett, D. C. & Collins, S. L. (eds.). Grassland dynamics, long-term ecological research in tallgrass prairie. Oxford University Press, New York.Google Scholar
KNOEPP, J. D. & SWANK, W. T. 1998. Rates of nitrogen mineralization across an elevation and vegetation gradient in the southern Appalachians. Plant and Soil 204:235241.CrossRefGoogle Scholar
LUDWIG, F., DE KROON, H., BERENDSE, F. & PRINS, H. H. T. 2004. The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecology 170:93105.CrossRefGoogle Scholar
MEDINA, E. 1982. Nitrogen balance in the Trachypogon grasslands of Central Venezuela. Plant and Soil 67:305314.CrossRefGoogle Scholar
MENAUT, J.-C., ABBADIE, L. & VITOUSEK, P. M. 1993. Nutrient and organic matter dynamics in tropical ecosystems. Pp. 215231 in Crutzen, P. J. & Goldammer, J. G. (eds.). The ecological, atmospheric and climatic importance of vegetation fires. John Wiley and Sons Ltd, Chichester.Google Scholar
MILLS, A. J. & FEY, M. V. 2005. Interactive response of herbivores, soils and vegetation to annual burning in a South African savanna. Austral Ecology 30:435444.CrossRefGoogle Scholar
MUCINA, L. & RUTHERFORD, M. C. 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria. 808 pp.Google Scholar
OJIMA, D. S., PARTON, W. J., SCHIMEL, D. S. & OWENSBY, C. E. 1990. Simulated impacts of annual burning on prairie ecosystems. Pp. 118132 in Collins, S. C. & Wallace, L. L. (eds.). Fire in North American tallgrass prairies. University of Oklahoma Press, Oklahoma City.Google Scholar
OJIMA, D. S., SCHIMEL, D. S., PARTON, W. J. & OWENSBY, C. E. 1994. Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24:6784.CrossRefGoogle Scholar
PETERSON, D. W. & REICH, P. B. 2001. Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecological Applications 11:914927.CrossRefGoogle Scholar
RAISON, R. J. 1979. Modification and the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil 51:73108.CrossRefGoogle Scholar
REICH, P. B., PETERSON, D. W., WEDIN, D. A. & WRAGE, K. 2001. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82:17031719.Google Scholar
ROBERTSON, G. P., WEDIN, D., GROFFMAN, P. M., BLAIR, J. M., HOLLAND, E. A., NADELHOFFER, K. J. & HARRIS, D. 1999. Soil carbon and nitrogen availability: nitrogen mineralization, nitri fication, and soil respiration potentials. Pp. 258271 in Robertson, G. P., Coleman, D. C., Bledsoe, C. S. & Sollins, P. (eds.). Standard soil methods for long-term ecological research. Oxford University Press, New York.CrossRefGoogle Scholar
RUSSELL-SMITH, J., WHITEHEAD, P. J., COOK, G. D. & HOARE, J. L. 2003. Response of Eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecological Monographs 75:349375.CrossRefGoogle Scholar
SANKARAN, M., HANAN, N. P., SCHOLES, R. J., RATNAM, J., AUGUSTINE, D. J., CADE, B. S., GIGNOUX, J., HIGGINS, S. I., LE ROUX, X., LUDWIG, F., ARDO, J., BANYIKA, F., BRONN, A., BUCINI, G., CAYLOR, K. K., COUGHENOUR, M. B., DIOUF, A., EKAYA, W., FERAL, C. J., FEBRUARY, E. C., FROST, P. G. H., HIERNAUX, P., HRABAR, H., METZGER, K. L., PRINS, H. H. T., RINGROSE, S., SEA, W., TEWS, J., WORDEN, J. & ZAMBATIS, N. 2005. Determinants of woody cover in African savannas. Nature 438:846849.CrossRefGoogle ScholarPubMed
SEASTEDT, T. R. & RAMUNDO, R. A. 1990. The influence of fire on belowground processes of tallgrass prairie. Pp. 99177 in Collins, S. C. & Wallace, L. L. (eds.). Fire in North American tallgrass prairies. University of Oklahoma Press, Oklahoma City.Google Scholar
SCHOLES, R. J. 1990. The influence of soil fertility on the ecology of southern African dry savannas. Journal of Biogeography 17:415419.CrossRefGoogle Scholar
SCHOLES, R. J. & ARCHER, S. R. 1997. Tree-grass interactions in savannas. Annual Review of Ecology and Systematics 28:517544.CrossRefGoogle Scholar
SINGH, R. S. 1994. Changes in soil nutrients following burning of dry tropical savanna. International Journal of Wildland Fire 4:187194.CrossRefGoogle Scholar
SKOWNO, A. L. & BOND, W. J. 2003. Bird community composition in an actively managed savanna reserve, importance of vegetation structure and vegetation composition. Biodiversity and Conservation 12:22792294.CrossRefGoogle Scholar
TAINTON, N. M. & MENTIS, M. T. 1983. Fire in grassland. Pp. 4052 in Booysen, P. V. & Tainton, N. M. (eds.). Ecological effects of fire in South African ecosystems. Springer-Verlag, Berlin.Google Scholar
TURNER, C. L., BLAIR, J. M., SCHARTZ, R. J. & NEEL, J. C. 1997. Soil N and plant responses to fire, topography and supplemental N in tallgrass prairie. Ecology 78:18321843.CrossRefGoogle Scholar
WALTER, H. 1971. Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh. 539 pp.Google Scholar
WAN, S., HUI, D. & LUO, Y. 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecological Applications 11:1349–1165.CrossRefGoogle Scholar
WEDIN, D. A. 1995. Species, nitrogen and grassland dynamics: the constraints of stuff. Pp. 253265 in Jones, C. & Lawton, J. H. (eds.). Linking species and ecosystems. Chapman and Hall, New York.CrossRefGoogle Scholar
WEDIN, D. A. & PASTOR, J. 1993. Nitrogen mineralization dynamics in grass monocultures. Oecologia 96:186192.CrossRefGoogle ScholarPubMed