Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T09:14:02.355Z Has data issue: false hasContentIssue false

Natural disturbance, vegetation patterns and ecological dynamics in tropical montane forests

Published online by Cambridge University Press:  14 July 2016

Shelley D. Crausbay*
Affiliation:
Department of Horticulture and Landscape Architecture and the Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
Patrick H. Martin
Affiliation:
Department of Horticulture and Landscape Architecture and the Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
*
1Corresponding author. Email: [email protected]

Abstract:

Disturbance is a central process in forest dynamics, yet the role of natural disturbance in tropical montane forests (TMFs) has not been systematically addressed. We posit that disturbance in TMFs has a wider role than commonly acknowledged and its effects are distinctive because: (1) TMFs often have very low rates of productivity due to low resources, and so recovery from disturbance may be slow, (2) montane forests have marked environmental heterogeneity which interacts with disturbance, (3) a large percentage of TMFs are regularly exposed to high energy windstorms and landslides, and (4) TMFs contain a biogeographically rich mixture of tree species with divergent evolutionary histories that interact differently with different disturbance types. We reviewed the literature on natural disturbance in TMFs and found 119 peer-reviewed papers which met our search criteria. Our review shows that disturbance is widespread in TMFs with pronounced effects on structure, function, composition and dynamics. Disturbance is also evident in the ecology of TMF biota with clear examples of plant life-history traits adapted to disturbance, including disturbance-triggered germination, treefall gap strategies and resprouting ability. Important aspects of TMF disturbances are stochastic and site-specific, but there are broad patterns in disturbance type, frequency and severity along latitudinal, altitudinal and environmental gradients. Compared with the lowland tropics, TMF disturbances are more spatially structured, TMFs experience more disturbance types in a given area due to environmental complexity, and TMFs are much more prone to small-scale yet severe landslides as well the large and potentially catastrophic disturbances of cyclones, forest die-back and fire. On the whole, natural disturbance should assume a larger role in models of ecosystem processes and vegetation patterns in TMFs. An improved understanding of what creates variation in disturbance severity and post-disturbance recovery rates, how composition and diversity feedback on disturbance type and likelihood, and how global change will alter these dynamics are important priorities in future TMF ecology research.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALVES, L. F., ASSIS, M. A., VAN MELIS, J., BARROS, A. L. S., VIEIRA, S. A., MARTINS, F. L., MARTINELLI, L. A. & JOLY, C. A. 2012. Variation in liana abundance and biomass along an elevational gradient in the tropical Atlantic Forest (Brazil). Ecological Research 27:323332.Google Scholar
ANDERSON, R. C., GARDNER, D. E., DAEHLER, C. C. & MEINZER, F. C. 2002. Dieback of Acacia koa in Hawaii: ecological and pathological characteristics of affected stands. Forest Ecology and Management 162:273286.CrossRefGoogle Scholar
APLET, G. H. & VITOUSEK, P. M. 1994. An age–altitude matrix analysis of Hawaiian rain-forest succession. Journal of Ecology 82:137147.Google Scholar
APLET, G. H., HUGHES, R. F. & VITOUSEK, P. M. 1998. Ecosystem development on Hawaiian lava flows: biomass and species composition. Journal of Vegetation Science 9:1726.Google Scholar
ARÁOZ, E. & GRAU, H. R. 2010. Fire-mediated forest encroachment in response to climatic and land-use change in subtropical Andean treelines. Ecosystems 13:9921005.Google Scholar
ARENTZ, F. 1988. Stand-level dieback etiology and its consequences in the forests of Papua New Guinea. Geojournal 17:209215.Google Scholar
ARIHAFA, A. & MACK, A. L. 2013. Treefall gap dynamics in a tropical rain forest in Papua New Guinea. Pacific Science 67:4758.Google Scholar
ARRIAGA, L. 1988. Gap dynamics of a tropical cloud forest in northeastern Mexico. Biotropica 20:178184.Google Scholar
ARRIAGA, L. 2000. Gap-building-phase regeneration in a tropical montane cloud forest of north-eastern Mexico. Journal of Tropical Ecology 16:535562.Google Scholar
ASBJORNSEN, H. & WICKEL, B. 2009. Changing fire regimes in tropical montane cloud forests: a global synthesis. Pp. 607626 in Cochrane, M. A. (ed.). Tropical fire ecology: climate change, land use, and ecosystem dynamics. Springer, Berlin.Google Scholar
ASBJORNSEN, H., VELÁZQUEZ-ROSAS, N., GARCÍA-SORIANO, R. & GALLARDO-HERNÁNDEZ, C. 2005. Deep ground fires cause massive above- and below-ground biomass losses in tropical montane cloud forests in Oaxaca, Mexico. Journal of Tropical Ecology 21:427434.Google Scholar
ASHTON, P. S. 2003. Floristic zonation of tree communities on wet tropical mountains revisited. Perspectives in Plant Ecology, Evolution and Systematics 6:87104.Google Scholar
ASNER, G. P. & GOLDSTEIN, G. 1997. Correlating stem biomechanical properties of Hawaiian canopy trees with hurricane wind damage. Biotropica 29:145150.Google Scholar
AUCLAIR, A. N. 1993. Extreme climatic fluctuations as a cause of forest dieback in the Pacific Rim. Water, Air, and Soil Pollution 66:207229.Google Scholar
BAISAN, C. H. & SWETNAM, T. W. 1990. Fire history on a desert mountain range: Rincon Mountain Wilderness, Arizona, U.S.A. Canadian Journal of Forest Research 20:15591569.Google Scholar
BELLINGHAM, P. J. & TANNER, E. V. J. 2000. The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica 32:378384.Google Scholar
BELLINGHAM, P. J. & SPARROW, A. D. 2009. Multi-stemmed trees in montane rain forests: their frequency and demography in relation to elevation, soil nutrients, and disturbance. Journal of Ecology 97:472483.Google Scholar
BELLINGHAM, P. J., KAPOS, V., VARTY, N., HEALEY, J. R., TANNER, E. V. J., KELLY, D. L., DALLING, W., BURNS, D. L. & SIDRAK, G. 1992. Hurricanes need not cause high mortality: the effects of Hurricane Gilbert on forests in Jamaica. Journal of Tropical Ecology 8:217223.CrossRefGoogle Scholar
BELLINGHAM, P. J., TANNER, E. V. J. & HEALEY, J. R. 1994. Sprouting of trees in Jamaican montane forests, after a hurricane. Journal of Ecology 82:747758.CrossRefGoogle Scholar
BELLINGHAM, P. J., TANNER, E. V. J. & HEALEY, J. R. 1995. Damage and responsiveness of Jamaican montane tree species after disturbance by a hurricane. Ecology 76:25622580.Google Scholar
BELLINGHAM, P. J., TANNER, E. V. J. & HEALEY, J. R. 2005. Hurricane disturbance accelerates invasion by the alien tree Pittosporum undulatum in Jamaican montane rain forests. Journal of Vegetation Science 16:675684.Google Scholar
BIGLER, C., KULAKOWSKI, D. & VEBLEN, T. T. 2005. Multiple disturbance interactions and drought influence fire severity in Rocky Mountain subalpine forests. Ecology 86:30183029.Google Scholar
BOEHMER, H. J., WAGNER, H. H., JACOBI, J. D., GERRISH, G. C. & MUELLER-DOMBOIS, D. 2013. Rebuilding after collapse: evidence for long-term cohort dynamics in the native Hawaiian rain forest. Journal of Vegetation Science 24:639650.CrossRefGoogle Scholar
BOOSE, E. R., FOSTER, D. R. & FLUET, M. 1994. Hurricane impacts to tropical and temperate forest landscapes. Ecological Monographs 64:369400.Google Scholar
BORMANN, F. H. & LIKENS, G. E. 1979. Catastrophic disturbance and the steady state in northern hardwood forests: a new look at the role of disturbance in the development of forest ecosystems suggests important implications for land-use policies. American Scientist 67:660669.Google Scholar
BROKAW, N. V. L. & GREAR, J. S. 1991. Forest structure before and after Hurricane Hugo at three elevations in the Luquillo Mountains, Puerto Rico. Biotropica 23:386392.Google Scholar
BROWN, P. M., KAYE, M. W., HUCKABY, L. S. & BAISAN, C. H. 2001. Fire history along environmental gradients in the Sacramento Mountains, New Mexico: influences of local patterns and regional processes. Ecoscience 8:115126.CrossRefGoogle Scholar
BRUIJNZEEL, L. A., SCATENA, F. N. & HAMILTON, L. S. (eds.). 2011. Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge. 739 pp.Google Scholar
BUSH, M. B., HANSEN, B. C. S., RODBELL, D. T., SELTZER, G. O., YOUNG, K. R., LEON, B., ABBOTT, M. B., SILMAN, M. R. & GOSLING, W. D. 2005. A 17000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru. Journal of Quaternary Science 20:703714.Google Scholar
BUSSMANN, R. 2004. Regeneration and succession patterns in African, Andean and Pacific tropical mountain forests: the role of natural and anthropogenic disturbance. Lyonia 6:93111.Google Scholar
BUSSMANN, R. W., WILCKE, W. & RICHTER, M. 2008. Landslides as important disturbance regimes – causes and regeneration. Pp. 319330 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Springer-Verlag, Berlin.Google Scholar
CANHAM, C. D. 1988. Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69:786795.CrossRefGoogle Scholar
CANHAM, C. D., DENSLOW, J. S., PLATT, W. J., RUNKLE, J. A., SPIES, T. A. & WHITE, P. S. 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian Journal of Forest Research 20:620631.Google Scholar
CANHAM, C. D., THOMPSON, J., ZIMMERMAN, J. K. & URIARTE, M. 2010. Variation in susceptibility to hurricane damage as a function of storm intensity in Puerto Rican tree species. Biotropica 42:8794.Google Scholar
CAVALIER, J., AIDE, M. T., SANTOS, C., EUSSE, A. M. & DUPUY, J. M. 1998. The savannization of moist forests in the Sierra Nevada de Santa Marta, Colombia. Journal of Biogeography 25:901912.Google Scholar
CHAI, S.-L., HEALEY, J. R. & TANNER, E. V. J. 2012. Evaluation of forest recovery over time and space using permanent plots monitored over 30 years in a Jamaican montane rain forest. PLoS ONE 7:e48859.Google Scholar
CHAPMAN, C. A., CHAPMAN, L. J., JACOB, A. L., ROTHMAN, J. M., OMEJA, P., REYNA-HURTADO, R., HARTTER, J. & LAWES, M. J. 2010. Tropical tree community shifts: implications for wildlife conservation. Biological Conservation 143:366374.Google Scholar
CHAZDON, R. L. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics 6:5171.CrossRefGoogle Scholar
CHEN, I.-C., HILL, J. K., OHLEMULLER, R., ROY, D. B. & THOMAS, C. D. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:10241026.Google Scholar
CHURCHILL, S. P., BALSLEV, H., FORERO, E. & LUTEYN, J. L. 1995. Biodiversity and conservation of neotropical montane forests: proceedings of the symposium, the New York Botanical Garden, 21–26 June 1993. The New York Botanical Garden, New York. 702 pp.Google Scholar
CLARKSON, B. D. 1998. Vegetation succession (1967–89) on five recent montane lava flows, Mauna Loa, Hawaii. New Zealand Journal of Ecology 22:19.Google Scholar
COBLENTZ, D. & KEATING, P. L. 2008. Topographic controls on the distribution of tree islands in the high Andes of south-western Ecuador. Journal of Biogeography 35:20262038.CrossRefGoogle Scholar
CONNELL, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.Google Scholar
CONSERVA, M. E. & BYRNE, R. 2002. Late Holocene vegetation change in the Sierra Madre Oriental of central Mexico. Quaternary Research 58:122129.Google Scholar
CORLETT, R. T. 1987. Post-fire succession on Mt Wilhelm, Papua New Guinea. Biotropica 19:157160.Google Scholar
CRAUSBAY, S. D. & HOTCHKISS, S. C. 2010. Strong relationships between vegetation and two perpendicular climate gradients high on a tropical mountain in Hawai‘i: vegetation gradients on a tropical mountain. Journal of Biogeography 37:11601174.Google Scholar
CRAUSBAY, S. D., GENDERJAHN, S., HOTCHKISS, S., SACHSE, D., KAHMEN, A. & ARNDT, S. K. 2014a. Vegetation dynamics at the upper reaches of a tropical montane forest are driven by disturbance over the past 7300 years. Arctic, Antarctic, and Alpine Research 46:787799.Google Scholar
CRAUSBAY, S. D., FRAZIER, A. G., GIAMBELLUCA, T. W., LONGMAN, R. J. & HOTCHKISS, S. C. 2014b. Moisture status during a strong El Niño explains a tropical montane cloud forest's upper limit. Oecologia 175:273284.Google Scholar
CRAUSBAY, S. D., MARTIN, P. H. & KELLY, E. F. 2015. Tropical montane vegetation dynamics near the upper cloud belt strongly associated with a shifting ITCZ and fire. Journal of Ecology 103:891903.Google Scholar
CRUZ-FERNÁNDEZ, Q. T., ALQUICIRA-ARTEAGA, M. L. & FLORES-PALACIOS, A. 2011. Is orchid species richness and abundance related to the conservation status of oak forest? Plant Ecology 212:10911099.Google Scholar
DAI, A. 2013. Increasing drought under global warming in observations and models. Nature 3:5258.Google Scholar
DALLING, J. W. 1994. Vegetation colonization of landslides in the Blue Mountains, Jamaica. Biotropica 26:392399.CrossRefGoogle Scholar
DALLING, J. W. & IREMONGER, S. F. 1994. Landslide disturbance in the Blue Mountains, Jamaica. Caribbean Journal of Science 30:290292.Google Scholar
DALLING, J. W. & TANNER, E. V. J. 1995. An experimental study of regeneration on landslides in montane rain forest in Jamaica. Journal of Ecology 83:5564.Google Scholar
DALLING, J. W., HEINEMAN, K., GONZÁLEZ, G. & OSTERTAG, R. 2016. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S0266467415000619.CrossRefGoogle Scholar
DE CARVALHO, L. M. T. & OLIVEIRA-FILHO, A. T. D. 2001. Distribution, size and dynamics of canopy gaps in a cloud forest of the Ibitipoca Range, southeastern Brazil. Dissertationes Botanicae 346:2939.Google Scholar
DE CARVALHO, L. M. T., FONTES, M. A. L. & DE OLIVEIRA-FILHO, A. T. 2000. Tree species distribution in canopy gaps and mature forest in an area of cloud forest of the Ibitipoca Range, south-eastern Brazil. Plant Ecology 149:922.Google Scholar
DE GOUVENAIN, R. C. & SILANDER, J. A. 2003. Do tropical storm regimes influence the structure of tropical lowland rain forests? Biotropica 35:166180.Google Scholar
DENSLOW, J. S. 1987. Tropical rainforest gaps and tree species diversity. Annual Review of Ecology and Systematics 18:421451.Google Scholar
DEZZEO, N., HERNÁNDEZ, L. & FÖLSTER, H. 1997. Canopy dieback in lower montane forests of Alto Uriman, Venezuelan Guayana. Plant Ecology 132:197209.Google Scholar
DISLICH, C. & HUTH, A. 2012. Modelling the impact of shallow landslides on forest structure in tropical montane forests. Ecological Modelling 239:4053.Google Scholar
DULL, R. A. 2004. An 8000-year record of vegetation, climate, and human disturbance from the Sierra de Apaneca, El Salvador. Quaternary Research 61:159167.Google Scholar
ELLENBERG, H. 1979. Man's influence on tropical mountain ecosystems in South America: the second Tansley lecture. Journal of Ecology 67:401416.Google Scholar
EWEL, J. 1980. Tropical succession: manifold routes to maturity. Biotropica 12 (supplement):27.Google Scholar
FAHEY, T. J., SHERMAN, R. E. & TANNER, E. V. J. 2016. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S0266467415000176.Google Scholar
FASHING, P. J. 2004. Mortality trends in the African cherry (Prunus africana) and the implications for colobus monkeys (Colobus guereza) in Kakamega Forest, Kenya. Biological Conservation 120:449459.Google Scholar
FEELEY, K. J., SILMAN, M. R., BUSH, M. B., FARFAN, W., CABRERA, K. G., MALHI, Y., MEIR, P., REVILLA, N. S., QUISIYUPANQUI, M. N. R. & SAATCHI, S. 2011. Upslope migration of Andean trees: Andean trees migrate upslope. Journal of Biogeography 38:783791.CrossRefGoogle Scholar
FLASPOHLER, D. J., GIARDINA, C. P., ASNER, G. P., HART, P., PRICE, J., LYONS, C. K. & CASTANEDA, X. 2010. Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests. Biological Conservation 143:280288.Google Scholar
FORBOSEH, P. F., SUNDERLAND, T. C. H., COMISKEY, J. A. & BALINGA, M. 2011. Tree population dynamics of three altitudinal vegetation communities on Mount Cameroon (1989–2004). Journal of Mountain Science 8:495504.Google Scholar
GANNON, B. M. & MARTIN, P. H. 2014. Reconstructing hurricane disturbance in a tropical montane forest landscape in the Cordillera Central, Dominican Republic: implications for vegetation patterns and dynamics. Arctic, Antarctic, and Alpine Research 46:767776.Google Scholar
GARWOOD, N. C., JANOS, D. P. & BROKAW, N. 1979. Earthquake-caused landslides: a major disturbance to tropical forests. Science 205:997999.CrossRefGoogle Scholar
GOLDAMMER, J. G. & PRICE, C. 1998. Potential impacts of climate change on fire regimes in the tropics based on MAGICC and a GISS GCM-derived lightning model. Climatic Change 39:273296.Google Scholar
GOODALE, U. M., ASHTON, M. S., BERLYN, G. P., GREGOIRE, T. G., SINGHAKUMARA, B. M. P. & TENNAKOON, K. U. 2012. Disturbance and tropical pioneer species: patterns of association across life history stages. Forest Ecology and Management 277:5466.Google Scholar
GRAU, H. R. & AIDE, M. 2008. Globalization and land-use transitions in Latin America. Ecology and Society 13:16.Google Scholar
GRAU, H. G. & VEBLEN, T. T. 2000. Rainfall variability, fire and vegetation dynamics in Neotropical montane ecosystems in north-western Argentina. Journal of Biogeography 27:11071121.Google Scholar
GRUBB, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83107.Google Scholar
HAGER, A. & DOHRENBUSCH, A. 2011. Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica. Pp. 208–216 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
HAMILTON, L. S., JUVIK, J. O. & SCATENA, F. N. (eds.). 1995. Tropical montane cloud forests. Springer-Verlag, New York. 410 pp.Google Scholar
HARRINGTON, R. A., FOWNES, J. H., SCOWCROFT, P. G. & VANN, C. S. 1997. Impact of Hurricane Iniki on native Hawaiian Acacia koa forests: damage and two-year recovery. Journal of Tropical Ecology 13:539558.Google Scholar
HEINSELMAN, M. L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quaternary Research 3:329382.Google Scholar
HEMP, A. 2005. Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Global Change Biology 11:10131023.Google Scholar
HEMP, A. 2006. Vegetation of Kilimanjaro: hidden endemics and missing bamboo. African Journal of Ecology 44:305328.Google Scholar
HERBERT, D. A., FOWNES, J. H. & VITOUSEK, P. M. 1999. Hurricane damage to a Hawaiian forest: nutrient supply rate affects resistance and resilience. Ecology 80:908920.CrossRefGoogle Scholar
HERWITZ, S. R. & YOUNG, S. S. 1994. Mortality, recruitment, and growth rates of montane tropical rain forest canopy trees on Mount Bellenden-Ker, northeast Queensland, Australia. Biotropica 26:350361.Google Scholar
HOPE, G. S. 1976. The vegetational history of Mt Wilhelm, Papua New Guinea. Journal of Ecology 64:627663.CrossRefGoogle Scholar
HOPE, G. 2009. Environmental change and fire in the Owen Stanley Ranges, Papua New Guinea. Quaternary Science Reviews 28:22612276.Google Scholar
HORN, S. P. & KAPPELLE, M. 2009. Fire in the páramo ecosystems of Central and South America. Pp. 505539 in Cochrane, M. A. (ed.). Tropical fire ecology: climate change, land use and ecosystem dynamics. Springer-Praxis, Berlin.Google Scholar
ISLEBE, G. A. & HOOGHIEMSTRA, H. 1997. Vegetation and climate history of montane Costa Rica since the last glacial. Quaternary Science Reviews 16:589604.Google Scholar
JACOBI, J. D. 1983. Metrosideros dieback in Hawai‘i: a comparison of adjacent dieback and non-dieback rain forest stands. New Zealand Journal of Ecology 6:7997.Google Scholar
JACOBI, J. D., GERRISH, G., MUELLER-DOMBOIS, D. & WHITEAKER, L. 1988. Stand-level dieback and Metrosideros regeneration in the montane rain forest of Hawaii. GeoJournal 17:193200.Google Scholar
KELLNER, J. R. & ASNER, G. P. 2009. Convergent structural responses of tropical forests to diverse disturbance regimes. Ecology Letters 12:887897.Google Scholar
KELLNER, J. R., ASNER, G. P., VITOUSEK, P. M., TWEITEN, M. A., HOTCHKISS, S. & CHADWICK, O. A. 2011. Dependence of forest structure and dynamics on substrate age and ecosystem development. Ecosystems 14:11561167.Google Scholar
KESSLER, M. 1999. Plant species richness and endemism during natural landslide succession in a perhumid montane forest in the Bolivian Andes. Ecotropica 5:123136.Google Scholar
KNUTSON, T. R., MCBRIDE, J. L., CHAN, J., EMANUEL, K., HOLLAND, G., LANDSEA, C., HELD, I., KOSSIN, J. P., SRIVASTAVA, A. K. & SUGI, M. 2010. Tropical cyclones and climate change. Nature Geoscience 3:157163.Google Scholar
KOWAL, E. K. 1966. Shifting cultivation, fire, and pine forest in the Cordillera Central, Luzon, Philippines. Ecological Monographs 36:389419.Google Scholar
LÆGAARD, S. 1992. Influence of fire in the grass páramo vegetation of Ecuador. Pp. 151170 in Balslev, H. & Luteyn, J. L. (eds.). Páramo: an Andean ecosystem under human influence. Academic Press, London.Google Scholar
LARSEN, M. C. & TORRES-SÁNCHEZ, A. J. 1998. The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24:309331.Google Scholar
LAWTON, R. M. & LAWTON, R. O. 2010. Complex spatial structure in a population of Didymopanax pittieri, a tree of wind-exposed lower montane rain forest. Plant Ecology 210:125135.Google Scholar
LAWTON, R. O. 1982. Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. American Journal of Botany 69:12241230.Google Scholar
LAWTON, R. O. & PUTZ, F. E. 1988. Natural disturbance and gap-phase regeneration in a wind-exposed tropical cloud forest. Ecology 69:764777.Google Scholar
LEVIN, S. A. & PAINE, R. T. 1975. The role of disturbance in models of community structure. Pp. 5663 in Levin, S. A. (ed.). Ecosystems analysis and prediction. Society for Industrial and Applied Mathematics, Philadelphia.Google Scholar
LOUCKS, O. L. 1970. Evolution of diversity, efficiency, and community stability. American Zoologist 10:1725.Google Scholar
MACK, A. L. 1998. The potential impact of small-scale physical disturbance on seedlings in a Papuan rainforest. Biotropica 30:547552.Google Scholar
MARTIN, P. H. & FAHEY, T. J. 2006. Fire history along environmental gradients in the subtropical pine forests of the Cordillera Central, Dominican Republic. Journal of Tropical Ecology 22:289302.Google Scholar
MARTIN, P. H. & FAHEY, T. J. 2014. Mesoclimatic patterns shape the striking vegetation mosaic in the Cordillera Central, Dominican Republic. Arctic, Antarctic, and Alpine Research 46:755765.CrossRefGoogle Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2007. Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. Journal of Biogeography 34:17921806.Google Scholar
MARTIN, P. H., FAHEY, T. J. & SHERMAN, R. E. 2011. Vegetation zonation in a Neotropical montane forest: environment, disturbance and ecotones. Biotropica 43:533543.Google Scholar
MATELSON, T. J., NADKARNI, N. M. & SOLANO, R. 1995. Tree damage and annual mortality in a montane forest in Monteverde, Costa Rica. Biotropica 27:441447.Google Scholar
MAY, T. 2000. Five years of post-fire vegetation succession in a Caribbean cloud forest (Cordillera Central, Dominican Republic). Ecotropica 6:117127.Google Scholar
MERLIN, M. D. & JUVIK, J. O. 1995. Montane cloud forests in the tropical Pacific: some aspects of their floristics, biogeography, ecology, and conservation. Pp. 234253 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds.). Tropical montane cloud forests. Ecological Studies, Vol. 110. Springer-Verlag, New York.Google Scholar
MUELLER-DOMBOIS, D. 1986. Perspectives for an etiology of stand-level dieback. Annual Review of Ecology and Systematics 17:221243.Google Scholar
MUELLER-DOMBOIS, D. 2000. Succession and zonation of vegetation in the volcanic mountains of the Hawaiian Islands. Acta Phytogeographica Suecica 85:3140.Google Scholar
MUENCHOW, J., BRENNING, A. & RICHTER, M. 2012. Geomorphic process rates of landslides along a humidity gradient in the tropical Andes. Geomorphology 139–140:271284.Google Scholar
MYERS, R. K. & VAN LEAR, D. H. 1998. Hurricane–fire interactions in coastal forests of the south: a review and hypothesis. Forest Ecology and Management 103:265276.Google Scholar
MYSTER, R. W. 1997. Seed predation, disease and germination on landslides in Neotropical lower montane wet forest. Journal of Vegetation Science 8:5564.Google Scholar
OHL, C. & BUSSMANN, R. 2004. Recolonization of natural landslides in tropical mountain forests of Southern Ecuador. Feddes Repertorium 115:248264.Google Scholar
OHSAWA, M. 1990. An interpretation of latitudinal patterns of forest limits in south and east Asian mountains. Journal of Ecology 78:326339.Google Scholar
OHSAWA, M. 1995. The montane cloud forest and its gradational changes in Southeast Asia. Pp. 254265 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds.). Tropical montane cloud forests. Ecological Studies, Vol. 110. Springer-Verlag, New York.Google Scholar
OLIVER, C. D. & LARSON, B.C. 1996. Forest stand dynamics. Wiley and Sons, New York.Google Scholar
OLIVERAS, I., MAHLI, Y., SALINAS, N., HUAMAN, V., URQUIAGA-FLORES, E., KALA-MAMANI, J., QUINTANO-LOAIZA, J. A., CUBA-TORRES, I., LIZARRAGA-MORALES, N. & ROMÁN-CUESTA, R. M. 2014. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline. Plant Ecology and Diversity 7:329340.Google Scholar
PATRICK, M., FOWLER, D., DUNN, R. R. & SANDERS, N. J. 2012. Effects of treefall gap disturbances on ant assemblages in a tropical montane cloud forest. Biotropica 44:472478.Google Scholar
PERRY, G. L. W. 2002. Landscapes, space and equilibrium: shifting viewpoints. Progress in Physical Geography 26:339359.Google Scholar
PETT-RIDGE, J. & SILVER, W. L. 2002. Survival, growth, and ecosystem dynamics of displaced bromeliads in a montane tropical forest. Biotropica 34:211224.Google Scholar
PHOENIX, G. K., HICKS, W. K., CINDERBY, S., KUYLENSTIERNA, J. C., STOCK, W. D., DENTENER, F. J., GILLER, K. E., AUSTIN, A. T., LEFROY, R. D., GIMENO, B. S. & ASHMORE, M. R. 2006. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology 12:470476.Google Scholar
PICKETT, S. T. & THOMPSON, J. N. 1978. Patch dynamics and the design of nature reserves. Biological Conservation 13:2737.Google Scholar
PICKETT, S. T. A. & WHITE, P. S. (eds.). 1985. The ecology of natural disturbance and patch dynamics. Academic Press, New York. 472 pp.Google Scholar
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.Google Scholar
RAICH, J. W., RUSSELL, A. E. & VITOUSEK, P.M. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai‘i. Ecology 78:707721.Google Scholar
RAMOS-SCHARRÓN, C. E., CASTELLANOS, E. J. & RESTREPO, C. 2012. The transfer of modern organic carbon by landslide activity in tropical montane ecosystems. Journal of Geophysical Research 117:118.Google Scholar
RESTREPO, C. & ALVAREZ, N. 2006. Landslides and their contribution to land-cover change in the mountains of Mexico and Central America. Biotropica 38:446457.Google Scholar
RESTREPO, C., VITOUSEK, P. & NEVILLE, P. 2003. Landslides significantly alter land cover and the distribution of biomass: an example from the Ninole ridges of Hawai‘i. Plant Ecology 166:131143.Google Scholar
RICHTER, M. 2009. To what extent do natural disturbances contribute to Andean plant diversity? A theoretical outline from the wettest and driest parts of the tropical Andes. Advances in Geosciences 22:95105.Google Scholar
ROMÁN-CUESTA, R. M., RETANA, J. & GRACIA, M. 2004. Fire trends in tropical Mexico: a case study of Chiapas. Journal of Forestry 102:2632.Google Scholar
ROMÁN-CUESTA, R. M., RETANA, J., GRACIA, M. & NEWTON, A. C. 2007. Fire challenges to conserving tropical ecosystems: the case study of Chiapas. Pp. 291–313 in Newton, A. C. (ed.). Biodiversity loss and conservation in fragmented forest landscapes: the forests of montane Mexico and temperate South America. CABI, Wallingford.Google Scholar
ROMÁN-CUESTA, R. M., SALINAS, N., ASBJORNSEN, H., OLIVERAS, I., HUAMAN, V., GUTIÉRREZ, Y., PUELLES, L., KALA, J., YABAR, D., ROJAS, M., ASTETE, R., JORDÁN, D. Y., SILMAN, M., MOSANDL, R., WEBER, M., STIMM, B., GÜNTER, S., KNOKE, T. & MALHI, Y. 2011. Implications of fires on carbon budgets in Andean cloud montane forest: the importance of peat soils and tree resprouting. Forest Ecology and Management 261:19871997.Google Scholar
SARMIENTO, G. 1986. Ecologically crucial features of climate in high tropical mountains. Pp. 11–45 in Vuilleumier, F. & Monasterio, M. (eds.). High altitude tropical biogeography. Oxford University Press, Oxford.Google Scholar
SAWADA, Y., AIBA, S. I., TAKYU, M., REPIN, R., NAIS, J. & KITAYAMA, K. 2015. Community dynamics over 14 years along gradients of geological substrate and topography in tropical montane forests on Mount Kinabalu, Borneo. Journal of Tropical Ecology 31:117128.Google Scholar
SCHLIEMANN, S. A. & BOCKHEIM, J. G. 2011. Methods for studying treefall gaps: a review. Forest Ecology and Management 261:11431151.Google Scholar
SHERMAN, R. E., MARTIN, P. H. & FAHEY, T. J. 2005. Vegetation-environment relationships in forest ecosystems of the Cordillera Central, Dominican Republic. Journal of the Torrey Botanical Society 132:293310.Google Scholar
SHERMAN, R. E., MARTIN, P. H., FAHEY, T. J. & DEGLORIA, S. D. 2008. Fire and vegetation dynamics in high-elevation neotropical montane forests of the Dominican Republic. Ambio 37:535541.Google Scholar
SMITH, A. P. & YOUNG, T. P. 1987. Tropical alpine plant ecology. Annual Review of Ecology and Systematics 18:137158.Google Scholar
SOETHE, N., LEHMANN, J. & ENGELS, C. 2006. Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador. Plant and Soil 279:173185.Google Scholar
SOUSA, W. P. 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15:353391.Google Scholar
SPRACKLEN, D. V. & RIGHELATO, R. 2014. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11:27412754.Google Scholar
STADTMÜLLER, T. 1987. Cloud forests in the humid tropics: a bibliographic review. The United Nations University, Tokyo. 81 pp.Google Scholar
STEYERMARK, J. A. & DUNSTERVILLE, G. C. K. 1980. The lowland floral element on the summit of Cerro Guaiquinima and other Cerros of the Guayana Highland of Venezuela. Journal of Biogeography 7:285303.Google Scholar
STOCKER, G. C. 1981. Regeneration of a north Queensland rain forest following felling and burning. Biotropica 13:8692.Google Scholar
SURYANTO, P., ZAKI, M. H., AZANI, M. A. & AZMY, M. 2010. Post-eruption species dynamic of Gunung Merapi National Park, Java, Indonesia. Journal of Tropical Biology and Conservation 7:4957.Google Scholar
TANNER, E. V. J. & BELLINGHAM, P. J. 2006. Less diverse forest is more resistant to hurricane disturbance: evidence from montane rain forests in Jamaica. Journal of Ecology 94:10031010.Google Scholar
TANNER, E. V. J., RODRIGUEZ-SANCHEZ, F., HEALEY, J. R., HOLDAWAY, R. J. & BELLINGHAM, P. J. 2014. Long-term hurricane damage effects on tropical forest tree growth and mortality. Ecology 95:29742983.Google Scholar
TEJEDA-CRUZ, C. & SUTHERLAND, W. J. 2005. Cloud forest bird responses to unusually severe storm damage. Biotropica 37:8895.Google Scholar
THOMAS, S. C., MARTIN, A. R. & MYCROFT, E. E. 2015. Tropical trees in a wind-exposed island ecosystem: height-diameter allometry and size at onset of maturity. Journal of Ecology 103:594605.Google Scholar
TROLL, C. 1956. Der klima- und vegetationsaufbau der erde im lichte neuer forschungen. Journal Akademie der Wissenschaften und der Literatur Mainz 216229.Google Scholar
TURNER, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91:28332849.Google Scholar
UNWIN, G. L. 1989. Structure and composition of the abrupt rainforest boundary in the Herberton Highland, north Queensland. Australian Journal of Botany 37:413428.Google Scholar
URIARTE, M., CANHAM, C. D., THOMPSON, J., ZIMMERMAN, J. K. & BROKAW, N. 2005. Seedling recruitment in a hurricane-driven tropical forest: light limitation, density-dependence and the spatial distribution of parent trees. Journal of Ecology 93:291304.Google Scholar
URREGO, D. H., NICCUM, B. A., LA DREW, C. F., SILMAN, M. R. & BUSH, M. B. 2011. Fire and drought as drivers of early Holocene tree line changes in the Peruvian Andes. Journal of Quaternary Science 26:2836.Google Scholar
VANDERGAST, A. G. & GILLESPIE, R. G. 2004. Effects of natural forest fragmentation on a Hawaiian spider community. Environmental Entomology 33:12961305.Google Scholar
VANDERMEER, J., MALLONA, M. A., BOUCHER, D., YIH, K. & PERFECTO, I. 1995. Three years of ingrowth following catastrophic hurricane damage on the Caribbean coast of Nicaragua: evidence in support of the direct regeneration hypothesis. Journal of Tropical Ecology 11:465471.Google Scholar
VARGAS-RODRIGUEZ, Y. L. & PLATT, W. J. 2012. Remnant sugar maple (Acer saccharum subsp. skutchii) populations at their range edge: characteristics, environmental constraints and conservation implications in tropical America. Biological Conservation 150:111120.Google Scholar
VÁZQUEZ-G, J. A. & GIVNISH, T. J. 1998. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. Journal of Ecology 86:9991020.Google Scholar
VENEKLAAS, E. J., ZAGT, R. J., VAN LEERDAM, A., VAN EK, R., BROEKHOVEN, A. J. & VAN GENDEREN, M. 1990. Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89:183192.Google Scholar
VITOUSEK, P. M. & WALKER, L. R. 1989. Biological invasion by Myrica faya in Hawai‘i plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs 59:247265.Google Scholar
WAIDE, R. B. & LUGO, A. E. 1992. A research perspective on disturbance and recovery of a tropical forest. Pp. 173189 in Goldammer, J. G. (ed.). Tropical forests in transition. Birkhäuser, Basel.Google Scholar
WAIDE, R. B., ZIMMERMAN, J. K. & SCATENA, F. N. 1998. Controls of primary productivity: lessons from the Luquillo Mountains in Puerto Rico. Ecology 79:3137.Google Scholar
WALKER, L. R. 1991. Tree damage and recovery from Hurricane Hugo in Luquillo experimental forest, Puerto Rico. Biotropica 23:379385.Google Scholar
WALKER, L. R. & SHIELS, A. B. 2012. Landslide ecology. Cambridge University Press, Cambridge. 299 pp.Google Scholar
WALKER, L. R. & VITOUSEK, P. M. 1991. An invader alters germination and growth of native dominant tree in Hawai‘i. Ecology 72:1449.Google Scholar
WALKER, L. R., ZARIN, D. J., FETCHER, N., MYSTER, R. W. & JOHNSON, A. H. 1996. Ecosystem development and plant succession on landslides in the Caribbean. Biotropica 28:566576.Google Scholar
WEAVER, P. L. 1990. Succession in the elfin woodland of the Luquillo Mountains of Puerto Rico. Biotropica 22:8389.Google Scholar
WEAVER, P. L. 2010. Tree species distribution and forest structure along environmental gradients in the dwarf forest of the Luquillo Mountains of Puerto Rico. Bois et forêts des tropiques 306:3344.Google Scholar
WEBSTER, G. L. 1995. The panorama of Neotropical cloud forests. Pp. 53–77 in Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L. (eds.). Biodiversity and conservation of neotropical montane forests. The New York Botanical Garden, New York.Google Scholar
WEST, P. W., STOCKER, G. C. & UNWIN, G. L. 1988. Environmental relationships and floristic and structural change in some unlogged tropical rainforest plots of north Queensland. Proceedings of the Ecological Society of Australia 15:4960.Google Scholar
WHITMORE, T. C. 1974. Change with time and the role of cyclones in tropical rain forest on Kolombangara, Solomon Islands. Commonwealth Forestry Institute, Institute Paper 46, University of Oxford, Oxford.Google Scholar
WHITMORE, T. C. 1975. Tropical rain forests of the Far East. Clarendon Press, Oxford. 295 pp.Google Scholar
WHITMORE, T. C. 1991. Tropical rain forest dynamics and its implications for management. Pp. 67–89 in Gómez-Pompa, A., Whitmore, T. C. & Hadley, M. (eds.). Rain forest regeneration and management. Parthenon Publishing, Lancaster.Google Scholar
XI, W., CHEN, S. H. V. & CHU, Y.C. 2012. The synergistic effects of typhoon and earthquake disturbances on forest ecosystems: lessons from Taiwan for ecological restoration and sustainable management. Tree and Forestry Science and Biotechnology 6:2733.Google Scholar
YIH, K., BOUCHER, D. H., VANDERMEER, J. H. & ZAMORA, N. 1991. Recovery of the rain forest of Southeastern Nicaragua after destruction by Hurricane Joan. Biotropica 23:106113.Google Scholar
YOUNG, K. R. 1993. Tropical treelines: changes in forest structure and regeneration between two Peruvian treeline margins. Arctic and Alpine Research 25:167174.Google Scholar
ZIMMERMAN, J. K., EVERHAM III, E. M., WAIDE, R. B., LODGE, D. J., TAYLOR, C. M. & BROKAW, N. V. 1994. Responses of tree species to hurricane winds in subtropical wet forest in Puerto Rico: implications for tropical tree life histories. Journal of Ecology 82:911922.Google Scholar
ZIMMERMANN, M., MEIR, P., SILMAN, M. R., FEDDERS, A., GIBBON, A., MALHI, Y., URREGO, D. H., BUSH, M. B., FEELEY, K. J., GARCIA, K. C., DARGIE, G. C., FARFAN, W. R., GOETZ, B. P., JOHNSON, W. T., KLINE, K. M., MODI, A. T., RURAU, N. M. Q., STAUDT, B. T. & ZAMORA, F. 2010. No differences in soil carbon stocks across the tree line in the Peruvian Andes. Ecosystems 13:6274.Google Scholar
ZULOAGA-AGUILAR, S., BRIONES, O. & OROZCO-SEGOVIA, A. 2010. Effect of heat shock on germination of 23 plant species in pine-oak and montane cloud forests in western Mexico. International Journal of Wildland Fire 19:759773.CrossRefGoogle Scholar
ZULOAGA-AGUILAR, S., BRIONES, O. & OROZCO-SEGOVIA, A. 2011. Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico. Acta Oecologica 37:256262.Google Scholar