Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T02:05:01.389Z Has data issue: false hasContentIssue false

Midday depression of net CO2 exchange of leaves of an emergent rain forest tree in French Guiana

Published online by Cambridge University Press:  10 July 2009

Jacques Roy
Affiliation:
Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, BP 5051, 34033 Montpellier Cedex, France
Jean-Louis Salager
Affiliation:
Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, BP 5051, 34033 Montpellier Cedex, France

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Bazzaz, F. A. & Pigkett, S. T. A. 1980. Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematics 11:287310.CrossRefGoogle Scholar
Bjorkman, O., Ludlow, M. M. & Morrow, P. A. 1972. Characterization of the light climate on the floor of a Queensland rain forest. Carnegie Institution of Washington Tear Book 71:8594.Google Scholar
Caemmerer, S. (Von) & Farquhar, G. D. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376387.CrossRefGoogle Scholar
Chazdon, R. L. & Pearcy, R. W. 1986. Photosynthetic responses to light variation in rain forest species. II. Carbon gain and photosynthetic efficiency during lightflecks. Oecologia 69:524531.CrossRefGoogle ScholarPubMed
Chiariello, N. R., Field, C. B. & Mooney, H. A. 1987. Midday wilting in a tropical pioneer tree. Functional Ecology 1:311.CrossRefGoogle Scholar
Correia, M. J., Chaves, M. M. C. & Pereira, J. S. 1990. Afternoon depression in photosynthesis in grapevine leaves. Evidence for a high light stress effect. Journal of Experimental Botany 41:417426.CrossRefGoogle Scholar
Doley, D., Unwin, G. L. & Yates, D. J. 1988. Spacial and temporal distribution of photosynthesis and transpiration by single leaves in a rain forest tree, Argyrodendron peralatum . Australian Journal of Plant Physiology 15:317326.Google Scholar
Eckardt, F. E., Helm, G., Methy, M. & Sauvezon, R. 1975. Interception de l'énergie rayonnante, échanges gazeux et croissance dans une forêt méditerranéenne à feuillage persistant (Quercetum ilicis). Photosynthelica 9:145156.Google Scholar
Garnier, E. & Berger, A. 1987. The influence of drought on stomatal conductance and water potential of peach trees growing in the field. Scientia Horliculturae 32:249263.CrossRefGoogle Scholar
Kwesiga, F. R., Grace, J. & Sandford, A. P. 1986. Some photosynthetic characteristics of tropical timber trees as affected by light regime during growth. Annals of Botany 58:2332.CrossRefGoogle Scholar
Lange, O. L., Tenhunen, J. D. & Braun, M. 1982. Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber. I. Comparison of the behaviour of various European Mediterranean species. Flora 172:563579.CrossRefGoogle Scholar
Langenheim, J. H., Osmond, C. B., Brooks, A. & Ferrar, P. J. 1984. Photosynthetic responses to light in seedlings of selected Amazonian and Australian rain forest tree species. Oecologia 63:215224.CrossRefGoogle Scholar
Lösch, R. & Tenhunen, J. D. 1981. Stomatal response to humidity. Phenomenon and mechanism. Pp. 137161 in Jarvis, P. J. & Mansfield, T. A. (eds). Stomatal physiology. Cambridge University Press, Cambridge. 295 pp.Google Scholar
Meyer, W. S. & Ritchie, J. T. 1980. Resistance to water flow in the sorghum plant. Plant Physiology 65:3339.CrossRefGoogle ScholarPubMed
Mooney, H. A., Field, C., Vasquez-Yanes, C. & Chu, C. 1983. Environmental controls on stomatal conductance in a shrub of the humid tropics. Proceedings of the Motional Academy of Sciences USA 80:12951297.CrossRefGoogle Scholar
Mooney, H. A., Harrison, A. & Morrow, P. 1975. Environmental limitations of photosynthesis on a Californian evergreen shrub. Oecologia 19:293301.CrossRefGoogle Scholar
Pearcy, R. W. 1987. Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understorey micro-environments. Functional Ecology 1:169178.CrossRefGoogle Scholar
Pearcy, R. W. 1988. Photosynthetic utilisation of lightflecks by understorey plants. Australian Journal of Plant Physiology 15:223238.Google Scholar
Pearcy, R. W., Osteryoung, K. & Calkin, H. W. 1985. Photosynthetic responses to dynamic light environments by Hawaiian trees. The time course of CO2 uptake and carbon gain during sunflecks. Plant Physiology 79:896902.CrossRefGoogle Scholar
Raschke, K. & Resemann, A. 1986. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to change in temperature and humidity. Planla 168:546558.Google Scholar
Roy, J. & Berger, A. 1983. Water potential measurement, water compartmentation and water flow in Daclylis glomerala L. leaves. New Phytologist 93:4352.CrossRefGoogle Scholar
Schulze, E. D. & Hall, A. E. 1982. Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. Pp. 181230 in Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H. (eds). Physiological plant ecology II. Water relations and carbon assimilation. Encyclopedia of plant physiology. New Series, vol. 12B. Springer-Verlag, Berlin, 747 pp.Google Scholar
Tenhunen, J. D., Lange, O. L. & Jahner, D. 1982. The control by atmospheric factors and water stress of midday stomatal closure in Arbutus unedo growing in a natural macchia. Oecologia 55:165169.CrossRefGoogle Scholar
Tenhunen, J. D., Lange, O. L., Gebel, J., Beyschlag, W. & Weber, J. A. 1984. Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression ofnet CO2 exchange of leaves of Quercus suber . Planta 162:193203.CrossRefGoogle Scholar
Thompson, W. A., Stocker, G. C. & Kriedeman, P. E. 1988. Growth and photosynthetic response to light and nutrients of Flindersia brayleyana F. Muell., a rain forest tree with broad tolerance to sun and shade. Australian Journal of Plant Physiology 15:299315.Google Scholar
Walters, M. B. & Field, C. B. 1987. Photosynthetic light acclimation in two rain forest Piper species with different ecological amplitudes. Oecologia 72:449456.CrossRefGoogle ScholarPubMed
Whitehead, D., Okali, D. U. U. & Fasehun, F. E. 1981. Stomatal response to environmental variables in two tropical forest species during the dry season in Nigeria. Journal of Applied Ecology 18:571587.CrossRefGoogle Scholar