Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T11:57:50.507Z Has data issue: false hasContentIssue false

Mammal and insect predation of chemically and structurally defended Mucuna holtonii (Fabaceae) seeds in a Costa Rican rain forest

Published online by Cambridge University Press:  30 March 2010

Erin K. Kuprewicz*
Affiliation:
Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables FL 33146, USA
Carlos García-Robledo
Affiliation:
Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables FL 33146, USA
*
1Corresponding author. Email: [email protected]

Abstract:

To prevent seed losses from predation, plants have developed protective strategies. Seeds may utilize chemical or structural defences to deter predators. Mucuna holtonii (Fabaceae) has large seeds containing a toxic amino acid, L-dopa, and covered with a hard seed coat. Our study assessed the effectiveness of chemical and mechanical seed defences against vertebrate and invertebrate seed predators within Estación Biológica La Selva, Costa Rica. Pre-dispersal insect and fungus attack of M. holtonii seeds was low (95.7% of 1493 seeds were undamaged). Camera traps monitoring 90 marked M. holtonii seeds showed that the collared peccary (Pecari tajacu) consumed 98.6% of 69 removed seeds over 16 d. Field experiments involving 100 seeds with intact and 100 with opened seed coats found that only opened seeds had endosperm removed by Sericomyrmex amabilis ants (0.5–100% of endosperm removed). Shade-house experiments showed that seeds with high amounts of endosperm removed by ants resulted in low germination success and low seedling biomass production. Although M. holtonii seeds are rich in L-dopa, this compound is not an effective chemical defence against mammals that possess foregut fermentation. The seed coat of M. holtonii is an effective structural defence against invertebrate seed predators, preventing endosperm removal and enhancing seedling survival.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BECK, H. 2005. Seed predation and dispersal by peccaries throughout the Neotropics and its consequences: a review and synthesis. Pp. 77115 in Forget, P.-M., Lambert, J. E., Hulme, P. E. & Vander Wall, S. B. (eds.). Seed fate: predation, dispersal and seedling establishment. CAB International, Wallingford.CrossRefGoogle Scholar
BELL, E. A. 1984. Toxic compounds in seeds. Pp. 245262 in Murray, D. R. (ed.). Seed physiology. Volume 1. Development. Academic Press, Sydney.Google Scholar
BELL, E. A. & JANZEN, D. H. 1971. Medical and ecological considerations for L-dopa and 5-HTP in seeds. Nature 229:136137.CrossRefGoogle ScholarPubMed
BODMER, R. E. 1991. Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica 23:255261.CrossRefGoogle Scholar
CARL, G. R. & BROWN, R. D. 1983. Protozoa in the forestomach of the collared peccary (Tayassu tajacu). Journal of Mammalogy 64:709.CrossRefGoogle Scholar
CRAWLEY, M. J. 1992. Seed predators and plant population dynamics. Pp. 157191 in Fenner, M. (ed.). Seeds, the ecology of regeneration in plant communities. CAB International, Wallingford.Google Scholar
DAXENBICHLER, M. E., VANETTEN, C. H., EARLE, F. R. & TALLENT, W. H. 1972. L-dopa recovery from Mucuna seed. Journal of Agricultural and Food Chemistry 20:10461048.Google Scholar
DIRZO, R. & DOMINGUEZ, C. A. 1986. Seed shadows, seed predation and the advantages of dispersal. Pp. 237349 in Estrada, A. & Fleming, T. H. (eds.). Frugivores and seed dispersal. Dr. W. Junk, The Hague.CrossRefGoogle Scholar
DIRZO, R., MENDOZA, E. & ORTÍZ, P. 2007. Size-related differential seed predation in a heavily defaunated Neotropical rain forest. Biotropica 39:355362.Google Scholar
ELSTON, J. J., KLINKSIEK, E. A. & HEWITT, D. G. 2005. Digestive efficiency of collared peccaries and wild pigs. Southwestern Naturalist 50:515519.CrossRefGoogle Scholar
EMENALOM, O. O., OKOLI, I. C. & UDEDIBIE, A. B. I. 2004. Observations on the pathophysiology of weaner pigs fed raw and preheated Nigerian Mucuna pruriens (Velvet Bean) seeds. Pakistan Journal of Nutrition 3:112117.Google Scholar
FELDMANN, M., VERHAAGH, M. & HEYMANN, E. W. 2000. Sericomyrmex ants as seed predators. Ecotropica 6:207209.Google Scholar
FORGET, P. M., KITAJIMA, K., & FOSTER, R. B. 1999. Pre- and post-dispersal seed predation in Tachigali versicolor (Caesalpiniaceae): effects of timing of fruiting and variation among trees. Journal of Tropical Ecology 15:6181.703CrossRefGoogle Scholar
GARCIA-ROBLEDO, C. & KUPREWICZ, E. K. 2009. Vertebrate fruit removal and ant seed dispersal in the Neotropical ginger Renealmia alpinia (Zingiberaceae). Biotropica 41:209214.CrossRefGoogle Scholar
GENTRY, A. 1996. A field guide to woody plants of northwest South America. (Second edition). University of Chicago Press, Chicago. 895 pp.Google Scholar
GREEN, T. W. & PALMBLAD, I. G. 1975. Effects of insect seed predators on Astragalus cibarius and Astragalus utahensis (Leguminosae). Ecology 56:14351440.CrossRefGoogle Scholar
HARMS, R. H., SIMPSON, C. F. & WALDROUP, P. W. 1961. Influence of feeding various levels of velvet beans to chicks and laying hens. Journal of Nutrition 75:127131.CrossRefGoogle ScholarPubMed
HOWE, H. F. & SMALLWOOD, J. 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics 13:201228.Google Scholar
JANSEN, P. A., BONGERS, F. & HEMERIK, L. 2004. Seed mass and mast seeding enhance dispersal by a Neotropical scatter-hoarding rodent. Ecological Monographs 74:569589.Google Scholar
JANZEN, D. H. 1971a. Escape of Cassia grandis L. beans from predators in time and space. Ecology 52:964979.CrossRefGoogle Scholar
JANZEN, D. H. 1971b. Escape of juvenile Dioclea megacarpa (Leguminosae) vines from predators in a deciduous tropical forest. American Naturalist 105:97112.CrossRefGoogle Scholar
JANZEN, D. H. 1971c. Seed predation by animals. Annual Review of Ecology and Systematics 2:465492.CrossRefGoogle Scholar
JANZEN, D. H. 1977a. How southern cowpea weevil larvae (Bruchidae: Callosobruchus maculatus) die on nonhost seeds. Ecology 58:921927.CrossRefGoogle Scholar
JANZEN, D. H. 1977b. Variation in seed size within a crop of a Costa Rican Mucuna andreana (Leguminosae). American Journal of Botany 64:347349.CrossRefGoogle Scholar
JANZEN, D. H., RYAN, C. A., LIENER, I. E. & PEARCE, G. 1986. Potentially defensive proteins in mature seeds of 59 species of tropical Leguminosae. Journal of Chemical Ecology 12:14691480.CrossRefGoogle ScholarPubMed
KILTIE, R. A. 1982. Bite force as a basis for niche differentiation between rain forest peccaries (Tayassu tajacu and Tayassu peccari). Biotropica 14:188195.CrossRefGoogle Scholar
MACK, A. L. 1998. An advantage of large seed size: tolerating rather than succumbing to seed predators. Biotropica 30:604608.CrossRefGoogle Scholar
MCDADE, L. A., BAWA, K. S., HESPENHEIDE, H. A. & HARTSHORN, G. S. 1994. La Selva: ecology and natural history of a Neotropical rain forest. University of Chicago Press, Chicago. 465 pp.Google Scholar
MCKENNA, D. D. & MCKENNA, K. M. 2006. Sesiid moths reduce germination, seedling growth, and survivorship in Pentaclethra macroloba (Mimosoideae), a locally dominant lowland Neotropical tree. Biotropica 38:508513.CrossRefGoogle Scholar
MODI, K. P., PATEL, N. M. & GOYAL, R. K. 2008. Estimation of L-dopa from Mucuna pruriens Linn. and formulations containing M. pruriens by HPTLC Method. Chemical and Pharmaceutical Bulletin 56:357359.CrossRefGoogle ScholarPubMed
NOGUEIRA, S. L. G. 2005. The effects of increasing levels of roughage on coefficients of nutrient digestibility in the collared peccary (Tayassu tajacu). Animal Feed Science and Technology 120:151157.CrossRefGoogle Scholar
OLMO, F. 1993. Diet of sympatric Brazilian caatinga peccaries (Tayassu tajacu and T. pecari). Journal of Tropical Ecology 9:255258.Google Scholar
REHR, S. S., JANZEN, D. H. & FEENY, P. P. 1973. L-dopa in legume seeds: a chemical barrier to insect attack. Science 181:8182.CrossRefGoogle Scholar
SCHUPP, E. W. 1988. Factors affecting post-dispersal seed survival in a tropical forest. Oecologia 76:525530.CrossRefGoogle Scholar
TEWKSBURY, J. J., REAGAN, K. M., MACHNICKI, N. J., CARLO, T. A., HAAK, D. C., PEÑALOZA, A. L. C. & LEVEY, D. J. 2008. Evolutionary ecology of pungency in wild chilis. Proceedings of the National Academy of Sciences, USA 105:1180811811.CrossRefGoogle Scholar
UDEDIBIE, A. B. I. & CARLINI, C. R. 1998a. Brazilian Mucuna pruriens seeds (velvet bean) lack hemagglutinating activity. Journal of Agricultural and Food Chemistry 46:14501452.Google Scholar
UDEDIBIE, A. B. I. & CARLINI, C. R. 1998b. Questions and answers to edibility problem of the Canavalia ensiformis seeds – a review. Animal Feed Science and Technology 74:95106.Google Scholar
VADIVEL, V. & JANARDHANAN, K. 2000. Nutritional and anti-nutritional composition of velvet bean: an under-utilized food legume in South India. International Journal of Food Science and Nutrition 51:279287.Google ScholarPubMed
VALLEJO-MARIN, M., DOMINGUEZ, C. A. & DIRZO, R. 2006. Simulated seed predation reveals a variety of germination responses of Neotropical rain forest species. American Journal of Botany 93:369376.Google Scholar
WOODSON, R. E. & SCHERRY, R. W. 1980. Flora of Panama part 5, fascicle 52. Annals of the Missouri Botanical Garden 67:523818.CrossRefGoogle Scholar