Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T05:07:18.654Z Has data issue: false hasContentIssue false

Long-term growth patterns of juvenile trees from a Bolivian tropical moist forest: shifting investments in diameter growth and height growth

Published online by Cambridge University Press:  14 August 2015

Danaë M.A. Rozendaal*
Affiliation:
Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, P.O. Box 80084, 3508 TB, Utrecht, the Netherlands Programa de Manejo de Bosques de la Amazonía Boliviana (PROMAB) – Universidad Autónoma de Beni (UAB), P.O. Box 107, Riberalta, Bolivia Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Heinjo J. During
Affiliation:
Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, P.O. Box 80084, 3508 TB, Utrecht, the Netherlands
Frank J. Sterck
Affiliation:
Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Daan Asscheman
Affiliation:
Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, P.O. Box 80084, 3508 TB, Utrecht, the Netherlands Programa de Manejo de Bosques de la Amazonía Boliviana (PROMAB) – Universidad Autónoma de Beni (UAB), P.O. Box 107, Riberalta, Bolivia
Jeroen Wiegeraad
Affiliation:
Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, P.O. Box 80084, 3508 TB, Utrecht, the Netherlands Programa de Manejo de Bosques de la Amazonía Boliviana (PROMAB) – Universidad Autónoma de Beni (UAB), P.O. Box 107, Riberalta, Bolivia
Pieter A. Zuidema
Affiliation:
Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, P.O. Box 80084, 3508 TB, Utrecht, the Netherlands Programa de Manejo de Bosques de la Amazonía Boliviana (PROMAB) – Universidad Autónoma de Beni (UAB), P.O. Box 107, Riberalta, Bolivia Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
*
1 Corresponding author. Present address: Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada. Email: [email protected]

Abstract:

Juvenile tropical trees grow from the shaded understorey to the high-light conditions of the canopy, but actual height growth trajectories towards the canopy remain unknown. Although height growth is the determining factor for reaching the canopy, investment in diameter growth is needed to sustain mechanical stability. We quantified variation in long-term juvenile tree growth patterns in diameter and height within three Bolivian moist forest species, and evaluated whether diameter growth and height growth were related. We reconstructed lifetime growth in diameter and height for 21–27 juvenile trees per species by measuring tree rings at various heights in the stem. Growth in diameter and height strongly varied among and within tree species. The light-demanding species Cedrelinga cateniformis needed just 6–19 y to reach a height of 3 m, while the more shade-tolerant species Clarisia racemosa and Peltogyne cf. heterophylla needed 8–39 y and 13–43 y, respectively. Diameter growth and height growth were not, or just weakly, positively related, and trees of the same height displayed a wide range in stem diameter. Our results indicate that trees of all three species shifted investment in diameter growth and height growth over time, most likely in response to variation in light levels.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIBA, M. & NAKASHIZUKA, T. 2007. Differences in the dry-mass cost of sapling vertical growth among 56 woody species co-occurring in a Bornean tropical rain forest. Functional Ecology 21:4149.CrossRefGoogle Scholar
ASSMAN, E. 1970. The principles of forest yield study. Pergamon Press, New York. 506 pp.Google Scholar
BAZZAZ, F. A. 1979. Physiological ecology of plant succession. Annual Review of Ecology and Systematics 10:351371.CrossRefGoogle Scholar
BEAUDET, M. & MESSIER, C. 1998. Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient. Canadian Journal of Forest Research 28:10071015.CrossRefGoogle Scholar
BEAUDET, M., BRISSON, J., GRAVEL, D. & MESSIER, C. 2007. Effect of a major canopy disturbance on the coexistence of Acer saccharum and Fagus grandifolia in the understorey of an old-growth forest. Journal of Ecology 95:458467.Google Scholar
BONGERS, F. & STERCK, F. J. 1998. The architecture of tropical rain forest trees: responses to light. Pp. 125162 in Newbery, D. M., Prins, H. H. T. & Brown, N. (eds.). Dynamics of tropical communities. Blackwell Science, Oxford.Google Scholar
BONSER, S. P. & AARSSEN, L. W. 1994. Plastic allometry in young sugar maple (Acer saccharum) – adaptive responses to light availability. American Journal of Botany 81:400406.CrossRefGoogle Scholar
BORMANN, F. H. 1965. Changes in the growth pattern of white pine trees undergoing suppression. Ecology 46:269277.Google Scholar
BRIENEN, R. J. W. & ZUIDEMA, P. A. 2006. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. Journal of Ecology 94:481493.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York. 488 pp.Google Scholar
CANHAM, C. D. 1988. Growth and canopy architecture of shade-tolerant trees – response to canopy gaps. Ecology 69:786795.CrossRefGoogle Scholar
CANNELL, M. G. R. & DEWAR, R. C. 1994. Carbon allocation in trees – a review of concepts for modeling. Advances in Ecological Research 25:59104.CrossRefGoogle Scholar
CARMEAN, W. H. 1972. Site index curves for upland oaks in central states. Forest Science 18:109120.Google Scholar
CATOVSKY, S., KOBE, R. K. & BAZZAZ, F. A. 2002. Nitrogen-induced changes in seedling regeneration and dynamics of mixed conifer-broad-leaved forests. Ecological Applications 12:16111625.Google Scholar
CHAVE, J., RÉJOU-MÉCHAIN, M., BÚRQUEZ, A., CHIDUMAYO, E., COLGAN, M. S., DELITTI, W. B. C., DUQUE, A., EID, T., FEARNSIDE, P. M., GOODMAN, R. C., HENRY, M., MARTÍNEZ-YRÍZAR, A., MUGASHA, W. A., MULLER-LANDAU, H. C., MENCUCCINI, M., NELSON, B. W., NGOMANDA, A., NOGUEIRA, E. M., ORTIZ-MALAVASSI, E., PÉLISSIER, R., PLOTON, P., RYAN, C. M., SALDARRIAGA, J. G. & VIEILLEDENT, G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20:31773190.Google Scholar
CLARK, D. A. & CLARK, D. B. 1992. Life-history diversity of canopy and emergent trees in a neotropical rain-forest. Ecological Monographs 62:315344.Google Scholar
CLARK, D. A. & CLARK, D. B. 1999. Assessing the growth of tropical rain forest trees: issues for forest modeling and management. Ecological Applications 9:981997.Google Scholar
CLARK, D. A. & CLARK, D. B. 2001. Getting to the canopy: tree height growth in a neotropical rain forest. Ecology 82:14601472.Google Scholar
CLARK, D. B. & CLARK, D. A. 1991. The impact of physical damage on canopy tree regeneration in tropical rain-forest. Journal of Ecology 79:447457.Google Scholar
CLAVEAU, Y., MESSIER, C., COMEAU, P. G. & COATES, K. D. 2002. Growth and crown morphological responses of boreal conifer seedlings and saplings with contrasting shade tolerance to a gradient of light and height. Canadian Journal of Forest Research 32:458468.CrossRefGoogle Scholar
COOMES, D. A. & GRUBB, P. J. 1998. A comparison of 12 tree species of Amazonian caatinga using growth rates in gaps and understorey, and allometric relationships. Functional Ecology 12:426435.CrossRefGoogle Scholar
DUCHESNEAU, R., LESAGE, I., MESSIER, C. & MORIN, H. 2001. Effects of light and intraspecific competition on growth and crown morphology of two size classes of understory balsam fir saplings. Forest Ecology and Management 140:215225.Google Scholar
DYER, M. E. & BAILEY, R. L. 1987. A test of six methods for estimating true heights from stem analysis data. Forest Science 33:313.Google Scholar
FELDPAUSCH, T. R., LLOYD, J., LEWIS, S. L., BRIENEN, R. J. W., GLOOR, M., MONTEAGUDO MENDOZA, A., LOPEZ-GONZALEZ, G., BANIN, L., ABU SALIM, K., AFFUM-BAFFOE, K., ALEXIADES, M., ALMEIDA, S., AMARAL, I., ANDRADE, A., ARAGÃO, L., ARAUJO MURAKAMI, A., ARETS, E., ARROYO, L., AYMARD, G. A., BAKER, T. R., BÁNKI, O. S., BERRY, N. J., CARDOZO, N., CHAVE, J., COMISKEY, J. A., ALVAREZ, E., DE OLIVEIRA, A., DI FIORE, A., DJAGBLETEY, G., DOMINGUES, T. F., ERWIN, T. L., FEARNSIDE, P. M., FRANÇA, M. B., FREITAS, M. A., HIGUCHI, N., HONORIO, E., IIDA, Y., JIMÉNEZ, E., KASSIM, A. R., KILLEEN, T. J., LAURANCE, W. F., LOVETT, J. C., MALHI, Y., MARIMON, B. S., MARIMON, B. H., LENZA, E., MARSHALL, A. R., MENDOZA, C., METCALFE, D. J., MITCHARD, E. T. A., NEILL, D. A., NELSON, B. W., NILUS, R., NOGUEIRA, E. M., PARADA, A., PEH, K. S. H., PENA CRUZ, A., PEÑUELA, M. C., PITMAN, N. C. A., PRIETO, A., QUESADA, C. A., RAMÍREZ, F., RAMÍREZ-ANGULO, H., REITSMA, J. M., RUDAS, A., SAIZ, G., SALOMÃO, R. P., SCHWARZ, M., SILVA, N., SILVA-ESPEJO, J. E., SILVEIRA, M., SONKÉ, B., STROPP, J., TAEDOUMG, H. E., TAN, S., TER STEEGE, H., TERBORGH, J., TORELLO-RAVENTOS, M., VAN DER HEIJDEN, G. M. F., VÁSQUEZ, R., VILANOVA, E., VOS, V. A., WHITE, L., WILLCOCK, S., WOELL, H. & PHILLIPS, O. L. 2012. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:33813403.Google Scholar
GROENENDIJK, P., SASS-KLAASSEN, U., BONGERS, F. & ZUIDEMA, P. A. 2014. Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in Central Africa. Forest Ecology and Management 323:6578.Google Scholar
GUTSELL, S. L. & JOHNSON, E. A. 2002. Accurately ageing trees and examining their height-growth rates: implications for interpreting forest dynamics. Journal of Ecology 90:153166.Google Scholar
HARA, T., KIMURA, M. & KIKUZAWA, K. 1991. Growth patterns of tree height and stem diameter in populations of Abies veitchii, A. mariesii and Betula ermanii . Journal of Ecology 79:10851098.CrossRefGoogle Scholar
HENRY, H. A. L. & AARSSEN, L. W. 1999. The interpretation of stem diameter-height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? Ecology Letters 2:8997.Google Scholar
HENRY, H. A. L. & AARSSEN, L. W. 2001. Inter- and intraspecific relationships between shade tolerance and shade avoidance in temperate trees. Oikos 93:477487.Google Scholar
JAOUEN, G., FOURNIER, M. & ALMERAS, T. 2010. Thigmomorphogenesis versus light in biomechanical growth strategies of saplings of two tropical rain forest tree species. Annals of Forest Science 67:211.CrossRefGoogle Scholar
KING, D. 1981. Tree dimensions – maximizing the rate of height growth in dense stands. Oecologia 51:351356.Google Scholar
KING, D. A. 1994. Influence of light level on the growth and morphology of saplings in a Panamanian forest. American Journal of Botany 81:948957.Google Scholar
KING, D. A. 1997. Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments. Tree Physiology 17:251258.CrossRefGoogle ScholarPubMed
KING, D. A., LEIGH, E. G., CONDIT, R., FOSTER, R. B. & HUBBELL, S. P. 1997. Relationships between branch spacing, growth rate and light in tropical forest saplings. Functional Ecology 11:627635.Google Scholar
KOHYAMA, T. 1980. Growth pattern of Abies mariesii saplings under conditions of open-growth and suppression. Botanical Magazine Tokyo 93:1324.Google Scholar
KOHYAMA, T. & HOTTA, M. 1990. Significance of allometry in tropical saplings. Functional Ecology 4:515521.Google Scholar
KOHYAMA, T., HARA, T. & TADAKI, Y. 1990. Patterns of trunk diameter, tree height and crown depth in crowded Abies stands. Annals of Botany 65:567574.Google Scholar
KOOYMAN, R. M. & WESTOBY, M. 2009. Costs of height gain in rainforest saplings: main-stem scaling, functional traits and strategy variation across 75 species. Annals of Botany 104:987993.Google Scholar
LILLES, E. B. & ASTRUP, R. 2012. Multiple resource limitation and ontogeny combined: a growth rate comparison of three co-occurring conifers. Canadian Journal of Forest Research 42:99110.CrossRefGoogle Scholar
NAKAGAWA, S. & SCHIELZETH, H. 2013. A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4:133142.Google Scholar
NIKLAS, K. J. 1995. Size-dependent allometry of tree height, diameter and trunk taper. Annals of Botany 75:217227.Google Scholar
OLIVER, C. D. & LARSON, B. C. 1996. Forest stand dynamics (Updated edition). Wiley, New York.Google Scholar
PETRITAN, A. M., VON LÜPKE, B. & PETRITAN, I. C. 2009. Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings. European Journal of Forest Research 128:6174.Google Scholar
POORTER, L. & WERGER, M. J. A. 1999. Light environment, sapling architecture, and leaf display in six rain forest tree species. American Journal of Botany 86:14641473.Google Scholar
ROZENDAAL, D. M. A. & ZUIDEMA, P. A. 2011. Dendroecology in the tropics: a review. Trees – Structure and Function 25:316.Google Scholar
ROZENDAAL, D. M. A., BRIENEN, R. J. W., SOLIZ-GAMBOA, C. C. & ZUIDEMA, P. A. 2010. Tropical tree rings reveal preferential survival of fast-growing juveniles and increased juvenile growth rates over time. New Phytologist 185:759769.Google Scholar
ROZENDAAL, D. M. A., SOLIZ-GAMBOA, C. C. & ZUIDEMA, P. A. 2011. Assessing long-term changes in tropical forest dynamics: a first test using tree-ring analysis. Trees – Structure and Function 25:115124.Google Scholar
SOLIZ-GAMBOA, C. C., ROZENDAAL, D. M. A., CECCANTINI, G., ANGYALOSSY, V., VAN DER BORG, K. & ZUIDEMA, P. A. 2011. Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees – Structure and Function 25:1727.CrossRefGoogle Scholar
SOLIZ-GAMBOA, C. C., SANDBRINK, A. & ZUIDEMA, P. A. 2012. Diameter growth of juvenile trees after gap formation in a Bolivian rain forest: responses are strongly species-specific and size-dependent. Biotropica 44:312320.Google Scholar
STERCK, F. J. 1999. Crown development in tropical rain forest trees in gaps and understorey. Plant Ecology 143:8998.Google Scholar
STERCK, F. J. & BONGERS, F. 1998. Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. American Journal of Botany 85:266272.Google Scholar
STERCK, F., MARTÍNEZ-RAMOS, M., DYER-LEAL, G., RODRÍGUEZ-VELAZQUEZ, J. & POORTER, L. 2003. The consequences of crown traits for the growth and survival of tree saplings in a Mexican lowland rainforest. Functional Ecology 17:194200.Google Scholar
SUMIDA, A., ITO, H. & ISAGI, Y. 1997. Trade-off between height growth and stem diameter growth for an evergreen oak, Quercus glauca, in a mixed hardwood forest. Functional Ecology 11:300309.Google Scholar
TAKAHASHI, K., SEINO, T. & KOHYAMA, T. 2001. Responses to canopy openings in architectural development of saplings in eight deciduous broadleaved tree species. Canadian Journal of Forest Research 31:13361347.Google Scholar
TOLEDO, M., POORTER, L., PEÑA-CLAROS, M., LEAÑO, C. & BONGERS, F. 2008. Diferencias, en las características edáficas y la estructura del bosque, de cuatro ecoregiones forestales de Bolivia. Revista Boliviana de Ecología y Conservación Ambiental 24:1126.Google Scholar
VAN BREUGEL, M., VAN BREUGEL, P., JANSEN, P. A., MARTÍNEZ-RAMOS, M. & BONGERS, F. 2012. The relative importance of above-versus belowground competition for tree growth during early succession of a tropical moist forest. Plant Ecology 213:2534.Google Scholar
VAN DER SLEEN, P., SOLIZ-GAMBOA, C. C., HELLE, G., PONS, T. L., ANTEN, N. P. R. & ZUIDEMA, P. A. 2014. Understanding causes of tree growth response to gap formation: Δ13C-values in tree rings reveal a predominant effect of light. Trees – Structure and Function 28:439448.CrossRefGoogle Scholar
WILLIAMS, H., MESSIER, C. & KNEESHAW, D. D. 1999. Effects of light availability and sapling size on the growth and crown morphology of understory Douglas fir and lodgepole pine. Canadian Journal of Forest Research 29:222231.Google Scholar