Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T19:49:57.806Z Has data issue: false hasContentIssue false

Length-mass relationships among an assemblage of tropical snakes in Costa Rica

Published online by Cambridge University Press:  10 July 2009

Craig Guyer
Affiliation:
Department of Biology, University of Miami, Coral Gables, FL 33124, USA
Maureen A. Donnelly
Affiliation:
Department of Biology, University of Miami, Coral Gables, FL 33124, USA

Abstract

Length-mass relationships within an assemblage of tropical snakes are used to describe morphological groups. We report patterns of body size based on length and mass measurements of 603 individual snakes of 27 species captured at La Selva, Costa Rica from March 1982 through August 1984. This assemblage of snakes is composed of at least four morphological groups each of which consists of species with similar habitat preferences. These groups are heavy-bodied terrestrial forms, light-bodied arboreal forms, long-tailed leaf-litter forms, and forms of unextreme relative mass and tail length. This tropical snake assemblage is more diverse in species richness and morphological diversity than a temperate assemblage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Denslow, J. S. 1980. Gap partitioning among tropical rain forest trees. Biotropica 12(suppl.):4755.Google Scholar
Dixon, J. R. & Soini, P. 1977. The reptiles of the Upper Amazon River Basin, Iquitos region, Peru. II. Crocodilians, turtles, and snakes. Milwaukee Public Museum Contributions in Biology and Geology 12:191Google Scholar
Dubost, G. 1979. The size of African forest artiodactyls as determined by vegetative structure. African Journal of Ecology 17:117.CrossRefGoogle Scholar
Duellman, W. E. 1979. The biology of an equatorial herpetofauna in Amazonian Ecuador. University of Kansas Museum of Natural History Miscellaneous Publications 65:1352.Google Scholar
Fetcher, N., Oberbauer, S. F. & Strain, B. R. 1985. Vegetation effects on microclimate in lowland tropical forest in Costa Rica. International Journal of Biometeorology 29:145155.Google Scholar
Frankie, G. W., Baker, H. G. & Opler, P. A. 1974. Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology 62:881919.CrossRefGoogle Scholar
Greene, H. W. 1983. Dietary correlates of the origin and radiation of snakes. American Zoologist 23:431441.Google Scholar
Greene, H. W. & Santana, M. A. 1983. Field studies of hunting behavior by bushmasters. American Zoologist 23:897.Google Scholar
Greenewalt, C. H. 1975. The flight of birds. Transactions of the American Philosophical Society 65:167.CrossRefGoogle Scholar
Griffiths, D. 1986. Size-abundance relations in communities. American Naturalist 127:140166.Google Scholar
Guyer, C. 1988. Food supplementation in a tropical mainland anole, Norops humilis: demographic effects. Ecology 69:350361Google Scholar
Hartshorn, G. S. 1978. Tree falls and tropical forest succession. Pp. 617–638 in Tomlinson, P. B. & Zimmerman, M. H. (eds). Tropical trees as living systems. Cambridge University Press, Cambridge, England. 675ppGoogle Scholar
Hartshorn, G. S. 1980. Neotropical forest dynamics. Biotropica 12(suppl.):2330.Google Scholar
Henderson, R. W. 1984. Scaphiodontophis (Serpentes: Colubridae): natural history and test of a mimicry-related hypothesis. Pp. 185–194 in Seigel, R. A., Hunt, L. E., Knight, J. L., Marlet, L. & Zuschlag, N. L. (eds). Vertebrate ecology and systematics - a tribute to Henry S. Fitch. Museum of Natural History, University of Kansas, Lawrence, Kansas. 278 pp.Google Scholar
Henderson, R. W. & Binder, M. H. 1980. The ecology and behavior of vine snakes (Ahaetulla, Oxybelis, Thelotornis, Uromacer): a review. Milwaukee Public Museum Contributions in Biology and Geology 37:138.Google Scholar
Holdridge, L. R. 1967. Life zone ecology. Tropical Science Center, San José, Costa Rica. 206 pp.Google Scholar
Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T. & Tosi, J. A. Jr, 1971. Forest environment in tropical life zones: a pilot study. Pergamon Press, Oxford, England. 747 ppGoogle Scholar
Johnson, R. G. 1955. The adaptive and phylogenetic significance of vertebral form in snakes. Evolution 9:367388.CrossRefGoogle Scholar
Kaufman, G. A. & Gibbons, J. W. 1975. Weight-length relationships in thirteen species of snakes in the southeastern United States. Herpetologica 31:3137.Google Scholar
Klauber, L. M. 1943. Tail-length differences in snakes, with notes on sexual dimorphism and the coefficient of divergence. Bulletin of the Zoological Society of San Diego 18:160.Google Scholar
Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. 1985. Mortality patterns and stand turnover rates in a wet tropical forest in Costa Rica. Journal of Ecology 73:915924.Google Scholar
Lieberman, M., Lieberman, D., Hartshorn, G. S. & Peralta, R. 1985. Small-scale altitudinal variation in lowland wet tropical forest vegetation. Journal of Ecology 73:505516.CrossRefGoogle Scholar
Liner, E. A. 1960. A new subspecies of false coral snake (Pliocercus elapoides) from San Luis Potosi, Mexico. Southwestern Naturalist 5:217220.Google Scholar
Marx, H. & Rabb, G. B. 1972. Phyletic analysis of fifty characters of advanced snakes. Fieldiana Zoology 63:1321.Google Scholar
Moermond, T. C. 1979. Habitat constraints on the behavior, morphology, and community structure of Anolis lizards. Ecology 60:152164.Google Scholar
Myers, C. W. 1974. The systematics of Rhadinaea (Colubridae), a genus of New World snakes. Bulletin of the American Museum of Natural History 153:1262.Google Scholar
Peters, J. A., Donoso-Barros, R., Orejas-Miranda, B. & Vanzolini, P. E. 1986. Catalogue of the Neotropical squamata. Smithsonian Institution Press, Washington, DC. 293pp.Google Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge, Mass. pp. 329.CrossRefGoogle Scholar
Pianka, E. R. 1986. Ecology and natural history of desert lizards. Princeton University Press, New Jersey, pp. 208Google Scholar
Pough, F. H. 1980. The advantages of ectothermy for tetrapods. American Naturalist 115:92112.CrossRefGoogle Scholar
Pough, F. H. & Groves, J. D. 1983. Specializations of the body form and food habits of snakes. American Zoologist 23:443454.Google Scholar
Vitt, L. J. & Congdon, J. D. 1978. Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. American Naturalist 112:595608.Google Scholar
Vitt, L. J. & Vangilder, L. D. 1983. Ecology of a snake community in northeastern Brazil. Amphibia-Reptilia 4:273296.Google Scholar
Zar, J. H. 1974. Bio statistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey. 620 pp.Google Scholar
Zug, G. R., Hedges, S. B. & Sunkel, S. 1979. Variation in reproductive parameters of three neotropical snakes, Coniophanes fissidens, Dipsas catesbyi, and Imantodes cenchoa. Smithsonian Con tributions in zoology 300:120.Google Scholar