Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T17:53:02.541Z Has data issue: false hasContentIssue false

Jellyfish distribution and abundance in relation to the physical habitat of Jellyfish Lake, Palau

Published online by Cambridge University Press:  13 February 2018

Megan A. Cimino*
Affiliation:
University of California at San Diego, 9500 Gilman Drive #0214, La Jolla, CA 92093, USA
Sharon Patris
Affiliation:
Coral Reef Research Foundation, PO Box 1765, Koror, PW, Palau 96940
Gerda Ucharm
Affiliation:
Coral Reef Research Foundation, PO Box 1765, Koror, PW, Palau 96940
Lori J. Bell
Affiliation:
Coral Reef Research Foundation, PO Box 1765, Koror, PW, Palau 96940
Eric Terrill
Affiliation:
University of California at San Diego, 9500 Gilman Drive #0214, La Jolla, CA 92093, USA
*
*Corresponding author. Email: [email protected]

Abstract:

Animals often select for habitats that increase their chance of survival by balancing the need to acquire food, reproduce and avoid predation. Perennial blooms of golden jellyfish (Mastigias papua etpisoni) are present in Jellyfish Lake, Palau, a popular tourist destination. Based on the species’ economic importance and unusual behavioural complexity, increased understanding of jellyfish habitat selection is necessary. We used a novel approach, a REMUS autonomous underwater vehicle, to quantify jellyfish distribution, abundance and habitat, and compared these findings to traditional methods. Midday acoustic surveys showed jellyfish distribution was patchy and the population resided mainly on the eastern side of the lake, as it is known that jellyfish migrate eastward towards the sun. Highest vertical densities of jellyfish were at 6–7 m, potentially to mitigate UV damage or photoinhibition of their photosymbionts, suggesting a coupling exists between their vertical distribution and water properties. Abundance estimates of jellyfish were ~2.75 and ~7.1 million (~2 million excluding bell diameters <1 cm) from acoustic and net samples, suggesting the methodology employed underestimated the population's smaller size fraction and non-synoptic surveys could impact estimates due to unresolved patchiness. Our approach could investigate population dynamics, behaviour or habitat associations on fine scales.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BENOIT-BIRD, K. J., MOLINE, M. A. & SOUTHALL, B. L. 2017. Prey in oceanic sound scattering layers organize to get a little help from their friends. Limnology and Oceanography. doi: 10.1002/lno.10606.Google Scholar
BRIERLEY, A. S., AXELSEN, B. E., BUECHER, E., SPARKS, C. A. J., BOYER, H. & GIBBONS, M. J. 2001. Acoustic observations of jellyfish in the Namibian Benguela. Marine Ecology Progress Series 210:5566.CrossRefGoogle Scholar
BRIERLEY, A. S., AXELSEN, B. E., BOYER, D. C., LYNAM, C. A., DIDCOCK, C. A., BOYER, H. J., SPARKS, C. A. J., PURCELL, J. E. & GIBBONS, M. J. 2004. Single-target echo detections of jellyfish. ICES Journal of Marine Science 61:383393.CrossRefGoogle Scholar
BRODEUR, R. D., MILLS, C. E., OVERLAND, J. E., WALTERS, G. E. & SCHUMACHER, J. D. 1999. Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fisheries Oceanography 8:296306.CrossRefGoogle Scholar
CRESSIE, N. 1988. Spatial prediction and ordinary kriging. Mathematical Geology 20:405421.Google Scholar
COLOMBO, G. A., BENOVIĆ, A., MALEJ, A., LUČIĆ, D., MAKOVEC, T., ONOFRI, V., ACHA, M., MADIROLAS, A. & MIANZAN, H.. 2009. Acoustic survey of a jellyfish-dominated ecosystem (Mljet Island, Croatia). Hydrobiologia 616:99111.CrossRefGoogle Scholar
D'AMBRA, I., GRAHAM, W. M., CARMICHAEL, R. H., MALEJ, A. & ONOFRI, V. 2013. Predation patterns and prey quality of medusae in a semi-enclosed marine lake: implications for food web energy transfer in coastal marine ecosystems. Journal of Plankton Research 35:13051312.Google Scholar
DAWSON, M. N. 2005. Five new subspecies of Mastigias (Scyphozoa: Rhizostomeae: Mastigiidae) from marine lakes, Palau, Micronesia. Journal of the Marine Biological Association of the United Kingdom 85:679694.Google Scholar
DAWSON, M. N. & HAMNER, W. M. 2003. Geographic variation and behavioral evolution in marine plankton: the case of Mastigias (Scyphozoa, Rhizostomeae). Marine Biology 143:11611174.Google Scholar
DAWSON, M. N., MARTIN, L. E. & PENLAND, L. K. 2001. Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451: 131144.Google Scholar
DONG, J., SUN, M., PURCELL, J. E., CHAI, Y., ZHAO, Y. & WANG, A. 2015. Effect of salinity and light intensity on somatic growth and podocyst production in polyps of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae). Hydrobiologia 754:7583.Google Scholar
FOLT, C. L. & BURNS, C. W. 1999. Biological drivers of zooplankton patchiness. Trends in Ecology and Evolution 14:300305.Google Scholar
GRAHAM, W. M., PAGÈS, F. & HAMNER, W. M. 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451:199212.CrossRefGoogle Scholar
GRAHAM, T. R., HARVEY, J. T. & BENSON, S. R. 2010. The acoustic identification and enumeration of scyphozoan jellyfish, prey for leatherback sea turtles (Dermochelys coriacea), off central California. ICES Journal of Marine Science 67:17391748.Google Scholar
HAMILTON, W. D. 1971. Geometry for the selfish herd. Journal of Theoretical Biology 31:295311.Google Scholar
HAMNER, W. M. & HAMNER, P. P. 1998. Stratified marine lakes of Palau (Western Caroline islands). Physical Geography 19:175220.Google Scholar
HAMNER, W. M. & HAURI, I. R. 1981. Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias). Limnology and Oceanography 26:414423.Google Scholar
HAMNER, W. M., GILMER, R. W. & HAMNER, P. P. 1982. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau. Limnology and Oceanography 27:896909.Google Scholar
HEDGEPETH, J. B. 1994. Stock assessment with hydroacoustic estimates of abundance via tuning and smoothed EM estimation. PhD dissertation, University of Washington, Seattle.Google Scholar
HEDGEPETH, J. B., GALLUCCI, V. F., O'SULLIVAN, F. & THORNE, R. E. 1999. An expectation maximization and smoothing approach for indirect acoustic estimation of fish size and density. ICES Journal of Marine Science 56:3650.Google Scholar
HIROSE, M., MUKAI, T., HWANG, D. & IIDA, K. 2009. The acoustic characteristics of three jellyfish species: Nemopilema nomurai, Cyanea nozakii, and Aurelia aurita . ICES Journal of Marine Science 66:15.CrossRefGoogle Scholar
JOURNEL, A. G. & HUIJBREGTS, C. J. 1978. Mining geostatistics. Academic Press, New York. 303 pp.Google Scholar
MARTIN, L. E., DAWSON, M. N., BELL, L. J. & COLIN, P. L. 2006. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific. Biology Letters 2:144147.Google Scholar
MOLINE, M. A., BLACKWELL, S. M., VON ALT, C., ALLEN, B., AUSTIN, T., CASE, J., FORRESTER, N., GOLDSBOROUGH, R., PURCELL, M. & STOKEY, R. 2005. Remote environmental monitoring units: an autonomous vehicle for characterizing coastal environments. Journal of Atmospheric and Oceanic Technology 22:17971808.Google Scholar
MUSCATINE, L. & MARIAN, R. E. 1982. Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnology and Oceanography 27:910917.Google Scholar
MUTLU, E. 1996. Target strength of the common jellyfish (Aurelia aurita): a preliminary experimental study with a dual-beam acoustic system. ICES Journal of Marine Science 53:309311.Google Scholar
PURCELL, J. E. 2003. Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Marine Ecology Progress Series 246:137152.Google Scholar
PURCELL, J. E., ATIENZA, D., FUENTES, V., OLARIAGA, A., TILVES, U., COLAHAN, C. & GILI, J. 2012. Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690: 169180.Google Scholar
RIBEIRO, P. J. J. & DIGGLE, P. J. 2001. geoR: a package for geostatistical analysis. R News 1:1518.Google Scholar
SIMMONDS, E. J. & MACLENNAN, D. N. 2005. Fisheries acoustics (Second edition). Blackwell Science Ltd, Oxford. 437 pp.Google Scholar
SUZUKI, K. S., YASUDA, A., MURATA, Y., KUMAKURA, E., YAMADA, S., ENDO, N. & NOGATA, Y. 2016. Quantitative effects of pycnocline and dissolved oxygen on vertical distribution of moon jellyfish Aurelia aurita sl: a case study of Mikawa Bay, Japan. Hydrobiologia 766: 151163.Google Scholar