Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T05:27:24.943Z Has data issue: false hasContentIssue false

Isotopic evidence for seed transfer from successional areas into forests by short-tailed fruit bats (Carollia spp.; Phyllostomidae)

Published online by Cambridge University Press:  13 February 2012

Christian C. Voigt*
Affiliation:
Evolutionary Ecology Research Group, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany Institute of Biology, Animal Behaviour, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
Silke L. Voigt-Heucke
Affiliation:
Institute of Biology, Animal Behaviour, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
Antje S. Kretzschmar
Affiliation:
Evolutionary Ecology Research Group, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
*
1Corresponding author. Email: [email protected]

Abstract:

Neotropical fruit-eating bats play a crucial role in forest regeneration by dispersing seeds of pioneer plants from forests into deforested areas. However, later in succession bats may carry seeds in both directions. We used an isotopic approach to reveal the direction of seed transfer mediated by three co-existing short-tailed fruit bats (Carollia castanea, C. sowelli and C. perspicillata) between a forest and an adjacent mid-successional site (>15 y since deforestation); two habitats where individuals of the genus Piper differed in stable carbon isotope ratios by ~2.5‰. In a feeding experiment, we confirmed that δ13C of seeds is not altered by digestive processes. We then collected seeds defecated by bats of the genus Carollia and found that δ13C of these seeds is higher than those of Piper individuals growing in the forest, irrespective of whether bats were captured in or outside the forest. We conclude that bats of the genus Carollia were more likely to carry seeds from successional areas into the forest than in the opposite direction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIDE, T. M., ZIMMERMANN, J. K., HERRERA, L., ROSARIO, M. & SERRANO, M. 1995. Forest recovery in abandoned tropical pastures in Puerto Rico. Forest Ecology and Management 77: 7786.CrossRefGoogle Scholar
CUBIÑA, A. & AIDE, T. M. 2001. The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture. Biotropica 33: 260267.CrossRefGoogle Scholar
EHLERINGER, J. R, KIN, Z. F., FIELD, C. B., SUN, G. C. & KUO, C. Y. 1987. Leaf carbon isotope ratios of plants from a subtropical monsoon forest. Oecologia 72:109114.CrossRefGoogle ScholarPubMed
ESTRADA, A., COATES-ESTRADA, R. & MERITT, D. 1993. Bat species richness and abundance in tropical rain forest fragments and in agricultural habitats at Los Tuxtlas, Mexico. Ecography 16:309318.CrossRefGoogle Scholar
FARIA, D. 2006. Phyllostomid bats of a fragmented landscape in the north-eastern Atlantic forest, Brazil. Journal of Tropical Ecology 22: 531542.CrossRefGoogle Scholar
FARQUHAR, G. D., O'LEARY, M. H. & BERRY, J. A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9:121137.Google Scholar
FLEMING, T. H. 1988. The short-tailed fruit bat – a study in plant–animal interactions. The University of Chicago Press. Chicago. 380 pp.Google Scholar
GORCHOV, D. L., CORNEJO, F., ASCORRA, C. & Jaramillo, M. 1993. The role of seed dispersal in the natural regeneration of rain forest after strip-cutting in the Peruvian Amazon. Vegetatio 107/108;339349.CrossRefGoogle Scholar
HARTSHORN, G. S. & HAMMEL, B. E. 1994. Vegetation types and floristic patterns. Pp. 7389 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: ecology and natural history of a neotropical rain forest. The University of Chicago, Chicago.Google Scholar
HEITHAUS, E. G. & FLEMING, T. H. 1978. Foraging movements of a frugivorous bat, Carollia perspicillata (Phyllostomatidae) Ecological Monographs 48:127143.CrossRefGoogle Scholar
KELM, D. H., WIESNER, K. R. & VON HELVERSEN, O. 2008. Effects of artificial roosts for frugivorous bats on seed dispersal in a Neotropical forest. Conservation Biology 22:733741.CrossRefGoogle Scholar
LASKA, M. 1990. Food transit time and carbohydrate use in three phyllostomid bat species. Zeitschrift für Säugetierkunde 55:4954.Google Scholar
LOPEZ, K. & VAUGHAN, C. 2004. Observations on the role of furgivorous bats as seed dispersers in Costa Rica secondary humid forests. Acta Chiropterologica 6:111119.CrossRefGoogle Scholar
MEDELLÍN, R. A. & GAONA, O. 1999. Seed dispersal by bats and birds in forest and disturbed habitats of Chiapas, México. Biotropica 31:478485.CrossRefGoogle Scholar
MEDINA, E. & MINCHIN, P. 1980. Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia 45:377378.CrossRefGoogle ScholarPubMed
MUSCARELLA, R. & FLEMING, T. H. 2007. The role of frugivorous bats in tropical forest succession. Biological Reviews 82:573590.CrossRefGoogle ScholarPubMed
REX, K., CZACZKES, B. I., MICHENER, R., KUNZ, T. H. & VOIGT, C. C. 2010. Specialisation and omnivory in diverse mammalian assemblages. Ecoscience 17:3746.CrossRefGoogle Scholar
REX, K., MICHENER, R., KUNZ, T. H. & VOIGT, C. C. 2011. Vertical stratification of Neotropical leaf-nosed bats (Phyllostomidae: Chiroptera) revealed by stable carbon isotopes. Journal of Tropical Ecology 27:211222.CrossRefGoogle Scholar
ROTHENWOERER, C., BECKER, N.I. & TSCHAPKA, M. 2011. Resource landscape and spatio-temporal activity patterns of a plant-visiting bat in a Costa Rican lowland rainforest. Journal of Zoology 283:108116.CrossRefGoogle Scholar
TIMM, R. M. & LAVAL, R. K. 1998. A field key to the bats of Costa Rica. Occasional Publication Series, University of Kansas 22:130.Google Scholar
UHL, C., BUSCHBACHER, R. & SERRAO, E. A. S. 1988. Abandoned pastures in eastern Amazonia. I. Patterns of plant succession. Journal of Ecology 76:663681.CrossRefGoogle Scholar
VAN DER MERWE, N. J. & MEDINA, E. 1989. Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochimica et Cosmochimica Acta 53:10991–1094.CrossRefGoogle Scholar
VAN DER MERWE, N. J. & MEDINA, E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Sciences 18:249259.CrossRefGoogle Scholar
VOGEL, J. C. 1978. Recycling of CO2 in a forest environment. Oecologia Plantarum 13:8994.Google Scholar
VOIGT, C. C. 2010. Insights into strata use of forest animals using the ‘canopy effect’ Biotropica 42:634637.CrossRefGoogle Scholar
VOIGT, C. C., REX, K., MICHENER, R. H. & SPEAKMAN, J. R. 2008. Nutrient routing in omnivorous animals tracked by stable carbon isotopes in tissue and exhaled breath. Oecologia 157:3140.CrossRefGoogle ScholarPubMed
VOIGT, C. C., KELM, D. H., BRADLEY, B. & ORTMANN, S. 2009. Dietary analysis of plant-visiting bats. Pp. 593609 in KUNZ, T. H. & PARSONS, S. (eds.). Ecological and behavioral methods for the study of bats. The Johns Hopkins University Press, Baltimore.Google Scholar
VOIGT, C. C., SÖRGEL, K. & DECHMANN, D. K. N. 2010. Refuelling while flying: foraging bats combust food rapidly and directly to fuel flight. Ecology 91:29082917.CrossRefGoogle ScholarPubMed
WILDEVEN, S. M. J. & KUZEE, M. E. 2000. Seed availability as a limiting factor in forest recovery processes in Costa Rica. Restoration Ecology 8:414424.CrossRefGoogle Scholar
YORK, H. A. & BILLINGS, S. A. 2009. Stable-isotope analysis of diets of short-tailed fruit bats (Chiroptera: Phyllostomidae: Carollia). Journal of Mammalogy 90:14691477.CrossRefGoogle Scholar