Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T03:14:12.147Z Has data issue: false hasContentIssue false

The impacts of recurrent fires on diversity of fruit-feeding butterflies in a south-eastern Amazon forest

Published online by Cambridge University Press:  20 December 2016

Rafael B. de Andrade*
Affiliation:
Departamento de Biologia Animal and Museu de Zoologia, Universidade Estadual de Campinas, Campinas, SP, Brazil Department of Geography, University of Colorado, Boulder, CO, USA
Jennifer K. Balch
Affiliation:
Department of Geography, University of Colorado, Boulder, CO, USA
Junia Y. O. Carreira
Affiliation:
Departamento de Biologia Animal and Museu de Zoologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
Paulo M. Brando
Affiliation:
Instituto de Pesquisa Ambiental da Amazônia, Brasília, DF, Brazil Woods Hole Research Center, MA, USA
André V. L. Freitas
Affiliation:
Departamento de Biologia Animal and Museu de Zoologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
*
*Corresponding author. Email: [email protected]

Abstract:

In the south-eastern Amazon, positive feedbacks between land use and severe weather events are increasing the frequency and intensity of fires, threatening local biodiversity. We sampled fruit-feeding butterflies in experimental plots in a south-eastern Amazon forest: one control plot, one plot burned every 3 y, one plot burned yearly. We also measured environmental parameters (canopy cover, temperature, humidity). Our results show no significant differences in overall species richness between plots (34, 37 and 33 species respectively), although richness was lower in burned plots during the dry season. We found significant differences in community composition and structure between control and burned plots, but not between burned treatments. In the control plot, forest-specialist species represented 64% of total abundance, decreasing to 50% in burned every 3 y and 54% in yearly burned plots. Savanna specialist species were absent in the control plot, but represented respectively 8% and 3% of total abundance in burned plots. The best predictor of the change in spatial community patterns and abundance of forest specialists was canopy cover. Although we found high resilience to forest burning in many species, our study suggests that fire disturbance can still be a threat to forest specialists due to changes in microclimate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANDRADE, R. B. & FREITAS, A. V. L. 2005. Population biology of two species of Heliconius (Nymphalidae: Heliconiinae) in a semi-deciduous forest in southeastern Brazil. Journal of the Lepidopterists’ Society 59:223228.Google Scholar
ANDRADE, R. B., BARLOW, J., LOUZADA, J., VAZ-DE-MELLO, F. Z., SOUZA, M., SILVEIRA, J. M. & COCHRANE, M. A. 2011. Quantifying responses of dung beetles to fire disturbance in tropical forests: The importance of trapping method and seasonality. PLoS ONE 6:e26208.CrossRefGoogle ScholarPubMed
ANDRADE, R. B., BARLOW, J., LOUZADA, J., VAZ-DE-MELLO, F. Z., SILVEIRA, J. M. & COCHRANE, M. A. 2014. Tropical forest fires and biodiversity: dung beetle community and biomass responses in a northern Brazilian Amazon forest. Journal of Insect Conservation 18:10971104.CrossRefGoogle Scholar
ARAGÃO, L. E. O. C. & SHIMABUKURO, Y. E. 2010. The incidence of fire in Amazonian forests with implications for REDD. Science 328:12751278.CrossRefGoogle ScholarPubMed
ARAGÃO, L. E. O. C., POULTER, B., BARLOW, J. B., ANDERSON, L. O., MALHI, Y., SAATCHI, S., PHILLIPS, O. L. & GLOOR, E. 2014. Environmental change and the carbon balance of Amazonian forests. Biological Reviews 89:913931.CrossRefGoogle ScholarPubMed
AUSTIN, G. T. 1992. New and additional records of Costa Rican butterflies. Tropical Lepidoptera 3:2533.Google Scholar
BALCH, J. K., NEPSTAD, D. C., BRANDO, P. M., CURRAN, L. M., PORTELA, O., DE CARVALHO, O. & LEFEBVRE, P. 2008. Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology 14:22762287.CrossRefGoogle Scholar
BALCH, J. K., NEPSTAD, D. C., CURRAN, L. M., BRANDO, P. M., PORTELA, O., GUILHERME, P., REUNING-SCHERER, J. D. & DE CARVALHO, O. 2011. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management 261:6877.CrossRefGoogle Scholar
BALCH, J. K., MASSAD, T. J., BRANDO, P. M., NEPSTAD, D. C. & CURRAN, L. M. 2013. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20120157.CrossRefGoogle ScholarPubMed
BALCH, J. K., BRANDO, P. M., NEPSTAD, D. C., COE, M. T., SILVÉRIO, D., MASSAD, T. J., DAVIDSON, E. A., LEFEBVRE, P., OLIVEIRA-SANTOS, C., ROCHA, W., CURY, R. T. S., PARSONS, A. & CARVALHO, K. S. 2015. The susceptibility of southeastern Amazon forests to fire: Insights from a large-scale burn experiment. Bioscience 65:893905.CrossRefGoogle Scholar
BARLOW, J. & PERES, C. A. 2004. Avifaunal responses to single and recurrent wildfires in Amazonian forests. Ecological Applications 14:13581373.CrossRefGoogle Scholar
BARLOW, J. & PERES, C. A. 2006. Effects of single and recurrent wildfires on fruit production and large vertebrate abundance in a central Amazonian forest. Biodiversity and Conservation 15:9851012.CrossRefGoogle Scholar
BARLOW, J., OVERAL, W. L., ARAUJO, I. S., GARDNER, T. A. & PERES, C. A. 2007a. The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. Journal of Applied Ecology 44:10011012.CrossRefGoogle Scholar
BARLOW, J., GARDNER, T. A., ARAUJO, I. S., AVILA-PIRES, T. C., BONALDO, A. B., COSTA, J. E., ESPOSITO, M. C., FERREIRA, L. V, HAWES, J., HERNANDEZ, M. I. M., HOOGMOED, M. S., LEITE, R. N., LO-MAN-HUNG, N. F., MALCOLM, J. R., MARTINS, M. B., MESTRE, L. A. M., MIRANDA-SANTOS, R., NUNES-GUTJAHR, A. L., OVERAL, W. L., PARRY, L., PETERS, S. L., RIBEIRO-JUNIOR, M. A., DA SILVA, M. N. F., MOTTA, C. DA S. & PERES, C. A. 2007b. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences USA 104:1855518560.CrossRefGoogle ScholarPubMed
BARLOW, J., SILVEIRA, J. M., MESTRE, L. A. M., ANDRADE, R. B. DE, D'ANDREA, G. C., LOUZADA, J., VAZ-DE-MELLO, F. Z., NUMATA, I., LACAU, S. & COCHRANE, M. A. 2012. Wildfires in bamboo-dominated Amazonian Forest: impacts on above-ground biomass and biodiversity. PLoS ONE 7:e33373.CrossRefGoogle ScholarPubMed
BECCALONI, G. W., HALL, S. K., VILORIA, A. L. & ROBINSON, G. S. 2008. Catalogue of the hostplants of the Neotropical Butterflies/Catálogo de las plantas huéspedes de las mariposas Neotropicales, 8. The Natural History Museum/Instituto Venezolano de Investigaciones Científicas. 536 pp.Google Scholar
BLOCK, W. M., FRANKLIN, A. B., WARD, J. P., GANEY, J. L. & WHITE, G. C. 2001. Design and implementation of monitoring studies to evaluate the success of ecological restoration on wildlife. Restoration Ecology 9:293303.CrossRefGoogle Scholar
BRANDO, P. M., NEPSTAD, D. C., BALCH, J. K., BOLKER, B., CHRISTMAN, M. C., COE, M. & PUTZ, F. E. 2012. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology 18:630641.CrossRefGoogle Scholar
BRANDO, P. M., BALCH, J. K., NEPSTAD, D. C., MORTON, D. C., PUTZ, F. E., COE, M. T., SILVÉRIO, D., MACEDO, M. N., DAVIDSON, E. A., NÓBREGA, C. C., ALENCAR, A. & SOARES-FILHO, B. S. 2014. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences USA 111:63476352.CrossRefGoogle ScholarPubMed
BRITO, M. M., RIBEIRO, D. B., RANIERO, M., HASUI, E., RAMOS, F. N. & ARAB, A. 2014. Functional composition and phenology of fruit-feeding butterflies in a fragmented landscape: variation of seasonality between habitat specialists. Journal of Insect Conservation 18:547560.CrossRefGoogle Scholar
BRODIE, J., POST, E. & LAURANCE, W. F. 2012. Climate change and tropical biodiversity: a new focus. Trends in Ecology and Evolution 27:145150.CrossRefGoogle ScholarPubMed
BROWN, K. S. 2005. Geologic, evolutionary, and ecological bases of the diversification of neotropical butterflies: implications for conservation. Pp. 166201 in Dick, C. W. & Moritz, G. (eds.). Tropical rainforest: past, present, and future. Chicago University Press, Chicago.Google Scholar
BRYANT, S. R., THOMAS, C. D. & BALE, J. S. 2002. The influence of thermal ecology on the distribution of three nymphalid butterflies. Journal of Applied Ecology 39:4355.CrossRefGoogle Scholar
CHARRETTE, N. A., CLEARY, D. F. R. & MOOERS, A. Ø. 2006. Range-restricted, specialist bornean butterflies are less likely to recover from Enso-induced disturbance. Ecology 87:23302337.CrossRefGoogle ScholarPubMed
CHECA, M. F., RODRIGUEZ, J., WILLMOT, K. R. & LIGER, B. 2014. Microclimate variability significantly affects the composition, abundance and phenology of butterfly communities in a highly threatened neotropical dry forest. Florida Entomologist 97:113.CrossRefGoogle Scholar
CLARKE, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117143.CrossRefGoogle Scholar
CLARKE, K. R. & AINSWORTH, M. 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology-Progress Series 92:205219.CrossRefGoogle Scholar
CLEARY, D. F. R. & GENNER, M. J. 2004. Changes in rain forest butterfly diversity following major ENSO-induced fires in Borneo. Global Ecology and Biogeography 13:129140.CrossRefGoogle Scholar
COCHRANE, M. A. 2003. Fire science for rainforests. Nature 421:913919.CrossRefGoogle ScholarPubMed
COCHRANE, M. A. & BARBER, C. P. 2009. Climate change, human land use and future fires in the Amazon. Global Change Biology 15:601612.CrossRefGoogle Scholar
COLWELL, R. K., MAO, C. X. & CHANG, J. 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:27172727.CrossRefGoogle Scholar
CONNELL, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.CrossRefGoogle ScholarPubMed
DORMANN, C. F., MCPHERSON, J. M., ARAÚJO, M. B., BIVAND, R., BOLLIGER, J., CARL, G. G., DAVIES, R. G., HIRZEL, A., JETZ, W., DANIEL KISSLING, W. D., KÜHN, I., OHLEMÜLLER, R. R., PERES-NETO, P. R., REINEKING, B., SCHRÖDER, B. M., SCHURR, F. M. & WILSON, R. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609628.CrossRefGoogle Scholar
DUMBRELL, A. J. & HILL, J. K. 2005. Impacts of selective logging on canopy and ground assemblages of tropical forest butterflies: implications for sampling. Biological Conservation 125:123131.CrossRefGoogle Scholar
FAYLE, T. M., TURNER, E. C., BASSET, Y., EWERS, R. M., REYNOLDS, G. & NOVOTNY, V. 2015. Whole-ecosystem experimental manipulations of tropical forests. Trends in Ecology and Evolution 30:334346.CrossRefGoogle ScholarPubMed
FILGUEIRAS, B. K. C., MELO, D. H. A., LEAL, I. R., TABARELLI, M., FREITAS, A. V. L. & IANNUZZI, L. 2016. Fruit-feeding butterflies in edge-dominated habitats: community structure, species persistence and cascade effect. Journal of Insect Conservation 20:539548.CrossRefGoogle Scholar
FOX, J. & WEISBERG, S. 2011. An {R} companion to applied regression (Second edition). Sage, Thousand Oaks. 472 pp.Google Scholar
FREITAS, A. V. L., ISERHARD, C. A., SANTOS, J. P., CARREIRA, J. Y. O., RIBEIRO, D. B., MELO, D. H. A., ROSA, A. H. B., MARINI-FILHO, O. J., ACCACIO, G. M. & UEHARA-PRADO, M. 2014. Studies with butterfly bait traps: an overview. Revista Colombiana de Entomología 40:209218.Google Scholar
GARDNER, T. A., BARLOW, J., ARAUJO, I. S., AVILA-PIRES, T. C., BONALDO, A. B., COSTA, J. E., ESPOSITO, M. C., FERREIRA, L. V, HAWES, J., HERNANDEZ, M. I. M., HOOGMOED, M. S., LEITE, R. N., LO-MAN-HUNG, N. F., MALCOLM, J. R., MARTINS, M. B., MESTRE, L. A. M., MIRANDA-SANTOS, R., OVERAL, W. L., PARRY, L., PETERS, S. L., RIBEIRO-JUNIOR, M. A., DA SILVA, M. N. F., MOTTA, C. DA S. & PERES, C. A. 2008. The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters 11:139150.CrossRefGoogle ScholarPubMed
HELLMANN, J. J. 2002. The effect of an environmental change on mobile butterfly larvae and the nutritional quality of their hosts. Journal of Animal Ecology 71:925936.CrossRefGoogle Scholar
IMATOMI, M., SOUZA, J. P., GUALTIERI, S. C. J. & FERREIRA, A. G. 2014. The role of root buds in the regeneration of Casearia sylvestris Swartz (Salicaceae) in the cerrado, São Carlos, São Paulo state, Brazil. Hoehnea 41:345352.CrossRefGoogle Scholar
KUNTE, K. 1997. Seasonal patterns in butterfly abundance and species diversity in four tropical habitats in northern Western Ghats. Journal of Biosciences 22:593603.CrossRefGoogle Scholar
LAWTON, J. H., BIGNELL, D. E., BOLTON, B., BLOEMERS, G. F., EGGLETON, P., HAMMOND, P. M., HODDA, M., HOLT, R. D., LARSEN, T. B., MAWDSLEY, N. A., STORK, N. E., SRIVASTAVA, D. S. & WATT, A. D. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:7276.CrossRefGoogle Scholar
LEATHER, S. R., BASSET, Y. & DIDHAM, R. K. 2014. How to avoid the top ten pitfalls in insect conservation and diversity research and minimise your chances of manuscript rejection. Insect Conservation and Diversity 7:13.CrossRefGoogle Scholar
LEGENDRE, P. & LEGENDRE, L. 2012. Numerical ecology. Elsevier, Amsterdam. 968 pp.Google Scholar
MAGURRAN, A. E. 2004. Measuring biological diversity. Blackwell Publishing Inc, Malden. 264 pp.Google Scholar
MALHI, Y., ROBERTS, J. T., BETTS, R. A., KILLEEN, T. J., LI, W. & NOBRE, C. A. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319:169172.CrossRefGoogle ScholarPubMed
MESTRE, L. A. M., COCHRANE, M. A. & BARLOW, J. 2013. Long-term changes in bird communities after wildfires in the central Brazilian Amazon. Biotropica 45:480488.CrossRefGoogle Scholar
NEPSTAD, D., CARVALHO, G., BARROS, A. C., ALENCAR, A., CAPOBIANCO, J. P., BISHOP, J., MOUTINHO, P., LEFEBVRE, P., LOPES SILVA, U. R. JR. & PRINS, E. 2001. Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management 154:395407.CrossRefGoogle Scholar
NEW, T. R. 2014. Insects, fire and conservation. Springer, London. 208 pp.CrossRefGoogle Scholar
NICHOLS, E., SPECTOR, S., LOUZADA, J., LARSEN, T., AMEZQUITA, S. & FAVILA, M. E. 2008. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation 141:14611474.CrossRefGoogle Scholar
NYAFWONO, M., VALTONEN, A., NYEKO, P. & ROININEN, H. 2014. Butterfly Community composition across a successional gradient in a human-disturbed Afro-tropical rain forest. Biotropica 46:210218.CrossRefGoogle Scholar
PARDONNET, S., BECK, H., MILBERG, P., BERGMAN, K-O. 2010. Effect of tree-fall gaps on fruit-feeding Nymphalidae assemblages in a Peruvian rainforest. Biotropica 45:612619.CrossRefGoogle Scholar
RIBEIRO, D. B. & FREITAS, A. V. L. 2012. The effect of reduced-impact logging on fruit-feeding butterflies in Central Amazon, Brazil. Journal of Insect Conservation 16:733744.CrossRefGoogle Scholar
RIBEIRO, D. B., BATISTA, R., PRADO, P. I., BROWN, K. S. & FREITAS, A. V. L. 2012. The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodiversity and Conservation 21:811827.CrossRefGoogle Scholar
SAMWAYS, M. J. 1993. Insects in biodiversity conservation – some perspectives and directives. Biodiversity and Conservation 2:258282.CrossRefGoogle Scholar
SANT'ANNA, C. L. B., RIBEIRO, D. B., GARCIA, L. C. & FREITAS, A. V. L. 2014. Fruit-feeding butterfly communities are influenced by restoration age in tropical forests. Restoration Ecology 22:480485.CrossRefGoogle Scholar
SHIMABUKURO, Y. E., BEUCHLE, R., GRECCHI, R. C., SIMONETTI, D. & ACHARD, F. 2014. Assessment of burned areas in Mato Grosso State, Brazil, from a systematic sample of medium resolution satellite imagery. Pp. 4257–4259 Proceedings of 2014 IEEE International Geoscience & Remote Sensing Symposium. IEEE, Piscataway.CrossRefGoogle Scholar
SILVEIRA, J. M., BARLOW, J., LOUZADA, J. & MOUTINHO, P. 2010. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests. PLoS ONE 5:e12877.CrossRefGoogle ScholarPubMed
SILVEIRA, J. M., BARLOW, J., ANDRADE, R. B. DE, MESTRE, L. A., LACAU, S. & COCHRANE, M. A. 2012. Responses of leaf-litter ant communities to tropical forest wildfires vary with season. Journal of Tropical Ecology 28:515518.CrossRefGoogle Scholar
SILVEIRA, J. M., BARLOW, J., ANDRADE, R. B., LOUZADA, J., MESTRE, L. A., LACAU, S., ZANETTI, R., NUMATA, I. & COCHRANE, M. A. 2013. The responses of leaf litter ant communities to wildfires in the Brazilian Amazon: a multi-region assessment. Biodiversity and Conservation 22:513529.CrossRefGoogle Scholar
SILVÉRIO, D. V., BRANDO, P. M., BALCH, J. K., PUTZ, F. E., NEPSTAD, D. C., OLIVEIRA-SANTOS, C. & BUSTAMANTE, M. M. C. 2013. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society of London B: Biological Sciences 368:20120427.CrossRefGoogle ScholarPubMed
SOMBROEK, W. 2001. Spatial and temporal patterns of Amazon rainfall. AMBIO: A Journal of the Human Environment 30:388396.CrossRefGoogle ScholarPubMed
TUFTO, J., LANDE, R., RINGSBY, T.-H., ENGEN, S., SÆTHER, B.-E., WALLA, T. R. & DEVRIES, P. J. 2012. Estimating Brownian motion dispersal rate, longevity and population density from spatially explicit mark–recapture data on tropical butterflies. Journal of Animal Ecology 81:756769.CrossRefGoogle ScholarPubMed
UEHARA-PRADO, M., BROWN, K. S. & FREITAS, A. V. L. 2007. Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: comparison between a fragmented and a continuous landscape. Global Ecology and Biogeography 16:4354.CrossRefGoogle Scholar
VENABLES, W. N. & RIPLEY, B. D. 2002. Modern applied statistics with S-Plus. (Fourth edition). Springer, New York. 462 pp.CrossRefGoogle Scholar
WALLISDEVRIES, M. F. & VAN SWAAY, C. A. M. 2006. Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Global Change Biology 12:16201626.CrossRefGoogle Scholar
YAMAMOTO, N., YOKOYAMA, J. & KAWATA, M. 2007. Relative resource abundance explains butterfly biodiversity in island communities. Proceedings of the National Academy of Sciences USA 104:1052410529.CrossRefGoogle ScholarPubMed