Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T11:23:48.509Z Has data issue: false hasContentIssue false

How do size distributions relate to concurrently measured demographic rates? Evidence from over 150 tree species in Panama

Published online by Cambridge University Press:  11 April 2016

Renato A.F. Lima*
Affiliation:
Laboratório de Ecologia Teórica (LET), Departamento de Ecologia, Universidade de São Paulo (USP), 05508-090, São Paulo, Brazil
Helene C. Muller-Landau
Affiliation:
Smithsonian Tropical Research Institute, Box 0843–03092, Balboa, Ancón, Republic of Panama
Paulo I. Prado
Affiliation:
Laboratório de Ecologia Teórica (LET), Departamento de Ecologia, Universidade de São Paulo (USP), 05508-090, São Paulo, Brazil
Richard Condit
Affiliation:
Smithsonian Tropical Research Institute, Box 0843–03092, Balboa, Ancón, Republic of Panama
*
1Corresponding author. Email: [email protected]

Abstract:

In stable populations with constant demographic rates, size distributions reflect size-dependent patterns of growth and mortality. However, population growth can also affect size distributions, which may not be aligned with current growth and mortality. Using 25 y of demographic data from the 50-ha Barro Colorado Island plot, we examined how interspecific variation in diameter distributions of over 150 tropical trees relates to growth–diameter and mortality–diameter curves and to population growth rates. Diameter distributions were more skewed in species with faster increases/slower decreases in absolute growth and mortality with diameter and higher population growth rates. The strongest predictor of the diameter distribution shape was the exponent governing the scaling of growth with diameter (partial R2 = 0.20–0.34), which differed among growth forms, indicating a role of life history variation. However, interspecific variation in diameter distributions was also significantly related to population growth rates (partial R2 = 0.03–0.23), reinforcing that many populations are not at equilibrium. Consequently, although fitted size distribution parameters were positively related to theoretical predictions based on current size-dependent growth and mortality, there was considerable deviation. These analyses show that temporally variable demographic rates, probably related to cyclic climate variation, are important influences on forest structure.

Type
Research Article
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BAILEY, R. L. & DELL, T. R. 1973. Quantifying diameter distributions with the Weibull function. Forest Science 19:97104.Google Scholar
BIN, Y., YE, W., MULLER-LANDAU, H. C., WU, L., LIAN, J. & CAO, H. 2012. Unimodal tree size distributions possibly result from relatively strong conservatism in intermediate size classes. PLoS ONE 7:e52596.Google Scholar
BOLKER, B. M. 2008. Ecological models and data in R. Princeton University Press, Princeton. 396 pp.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 2002. Model selection and multi-model inference: a practical information-theoretic approach. (Second edition). Springer, New York. 488 pp.Google Scholar
CONDIT, R. 1998. Tropical Forest Census Plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer-Verlag, Georgetown. 211 pp.CrossRefGoogle Scholar
CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 1993. Identifying fast-growing native trees from the Neotropics using data from a large, permanent census plot. Forest Ecology and Management 62:123143.CrossRefGoogle Scholar
CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 1995. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65:419439.CrossRefGoogle Scholar
CONDIT, R., SUKUMAR, R., HUBBELL, S. P. & FOSTER, R. B. 1998. Predicting population trends from size distributions: a direct test in a tropical tree community. American Naturalist 152:495509.Google Scholar
CONDIT, R., ASHTON, P. S., MANOKARAN, N., LAFRANKIE, J. V., HUBBELL, S. P. & FOSTER, R. B. 1999. Dynamics of the forest communities at Pasoh and Barro Colorado: comparing two 50-ha plots. Philosophical Transactions of the Royal Society of London (Series B) 354:17391748.Google Scholar
CONDIT, R., AGUILAR, S., HERNANDEZ, A., PEREZ, R., LAO, S., ANGEHR, G., HUBBELL, S. P. & FOSTER, R. B. 2004. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. Journal of Tropical Ecology 20:5172.Google Scholar
COOMES, D. A. & ALLEN, R. B. 2007. Mortality and tree-size distributions in natural mixed-age forests. Journal of Ecology 95:2740.Google Scholar
FEELEY, K. J., DAVIES, S. J., NOOR, M., KASSIM, A. R. & TAN, S. 2007. Do current stem size distributions predict future population changes? An empirical test of intraspecific patterns in tropical trees at two spatial scales. Journal of Tropical Ecology 23:191198.CrossRefGoogle Scholar
GOFF, F. G. & WEST, D. 1975. Canopy-understory interaction effects on forest population structure. Forest Science 21:98108.Google Scholar
HARCOMBE, P. A. 1987. Tree life tables. Bioscience 37:557568.Google Scholar
HUBBELL, S. P. & FOSTER, R. B. 1986. Commonness and rarity in a Neotropical forest: implications for tropical tree conservation. Pp. 205231 in Soulé, M. E. (ed.). Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland.Google Scholar
IIDA, Y., POORTER, L., STERCK, F., KASSIM, A. R., POTTS, M. D., KUBO, T. & KOHYAMA, T. S. 2014. Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species. Ecology 95:353363.CrossRefGoogle ScholarPubMed
KING, D. A., DAVIES, S. J. & NOOR, N. S. M. 2006. Growth and mortality are related to adult tree size in a Malaysian mixed dipterocarp forest. Forest Ecology and Management 223:152158.Google Scholar
KOHIRA, M. & NINOMIYA, I. 2003. Detecting tree populations at risk for forest conservation management: using single-year vs. long-term inventory data. Forest Ecology and Management 174:423435.Google Scholar
KOHYAMA, T., SUZUKI, E., PARTOMIHARDJO, T., YAMADA, T. & KUBO, T. 2003. Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. Journal of Ecology 91:797806.Google Scholar
KOHYAMA, T. S., POTTS, M. D., KOHYAMA, T. I., KASSIM, A. R. & ASHTON, P. S. 2015. Demographic properties shape tree size distribution in a Malaysian rain forest. American Naturalist 185:367379.Google Scholar
LEAK, W. B. 2002. Origin of sigmoid diameter distributions. Research Paper NE-178. USDA Forest Service, Newtown Square. 10 pp.Google Scholar
LEIGH, E. G., LAO, S. L., CONDIT, R., HUBBELL, S. P., FOSTER, R. B. & PEREZ, R. 2004. Barro Colorado Island forest dynamics plot, Panama. pp. 451463 in Losos, E. C. & Leigh, E.G. (eds.). Tropical forest diversity and dynamism: findings from a large-scale plot network. University of Chicago Press, Chicago.Google Scholar
LIMA, R. A. F., BATISTA, J. L. F. & PRADO, P. I. 2015. Modeling tree diameter distributions in natural forests: an evaluation of 10 statistical models. Forest Science 61:320327.Google Scholar
LORIMER, C. G. & FRELICH, L. E. 1984. A simulation of equilibrium diameter distributions of Sugar Maple (Acer saccharum). Bulletin of the Torrey Botanical Club 111:193199.Google Scholar
LORIMER, C. G., DAHIR, S. E. & NORDHEIM, E. V. 2001. Tree mortality rates and longevity in mature and old-growth hemlock-hardwood forests. Journal of Ecology 89:960971.CrossRefGoogle Scholar
MULLER-LANDAU, H. C., CONDIT, R., HARMS, K. E., MARKS, C. O., THOMAS, S. C., BUNYAVEJCHEWIN, S., CHUYONG, G., CO, L., DAVIES, S., FOSTER, R. B., GUNATILLEKE, S., GUNATILLEKE, N., HART, T. B., HUBBELL, S. P., ITOH, A., KASSIM, A. R., KENFACK, D., LAFRANKIE, J. V., LAGUNZARD, D., LEE, H. S., LOSOS, E., MAKANA, J., OHKUBO, T., SAMPER, C., SAKUMAR, R., SUN, I.-F., SUPARDI, N., TAN, S., THOMAS, D., THOMPSON, J., VALENCIA, R., VALLEJO, M. I., MUÑOZ, G. V., YAMAKURA, T., ZIMMERMAN, J. K., DATTARAJA, H. S., ESUFALI, S., HALL, P., HE, F., HERNÁNDEZ, C., KIRATIPRAYOON, S., SURESH, H. S., WILLS, C. & ASHTON, P. 2006. Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecology Letters 9:589602.Google Scholar
NAKAGAWA, M., TANAKA, K., NAKASHIZUKA, T., OHKUBO, T., KATO, T., MAEDA, T., SATO, K., MIGUCHI, H., NAGAMASU, H., OGINO, K., TEO, S., HAMID, A. A. & LEE, H. S. 2000. Impact of severe drought associated with the 1997–1998 El Nino in a tropical forest in Sarawak. Journal of Tropical Ecology 16:355367.Google Scholar
RÜGER, N. & CONDIT, R. 2012. Testing metabolic theory with models of tree growth that include light competition. Functional Ecology 26:759765.CrossRefGoogle Scholar
RÜGER, N., HUTH, A., HUBBELL, S. P. & CONDIT, R. 2011. Determinants of mortality across a tropical lowland rainforest community. Oikos 120:10471056.CrossRefGoogle Scholar
SMITH, R. J. 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140:476486.CrossRefGoogle ScholarPubMed
TOLEDO, J. J., MAGNUSSON, W. E. & CASTILHO, C. V. 2013. Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia. Journal of Vegetation Science 24:651663.CrossRefGoogle Scholar
VAN SICKLE, J. 1977. Mortality rates from size distributions. The application of a conservation law. Oecologia 27:311318.Google Scholar
WILLIAMSON, G. B., LAURANCE, W. F., OLIVEIRA, A. A., DELAMONICA, P., GASCON, C., LOVEJOY, T. E. & POHL, L. 2000. Amazonian tree mortality during the 1997 El Nino drought. Conservation Biology 14:15381542.Google Scholar
WRIGHT, S. J., CARRASCO, C., CALDERON, O. & PATON, S. 1999. The El Nino Southern Oscillation variable fruit production, and famine in a tropical forest. Ecology 80:16321647.Google Scholar
WRIGHT, S. J., MULLER-LANDAU, H. C., CONDIT, R. & HUBBELL, S. P. 2003. Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 84:31743185.Google Scholar
ZUUR, A. F., IENO, E. N., WALKER, N. J., SAVELIEV, A. A. & SMITH, G. M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York. 574 pp.Google Scholar