Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T10:11:58.275Z Has data issue: false hasContentIssue false

Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality

Published online by Cambridge University Press:  23 May 2013

Jaqueline Durigon*
Affiliation:
Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
Sandra Milena Durán
Affiliation:
Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
Ernesto Gianoli
Affiliation:
Departamento de Biología, Universidad de la Serena, La Serena, Chile Departamento de Botánica, Universidad de Concepción, Concepción, Chile
*
1Corresponding author. Email: [email protected]

Abstract:

Root climbers constitute a distinctive group within climbing plants and some evidence suggests that they are associated with high precipitation and low light availability at local scales, which is in contrast with general patterns of liana distribution in the tropics. The influence of precipitation and seasonality on the occurrence of root climbers was evaluated both globally and in the tropics. The presence/absence of root climbers was recorded in 174 sites of Alwyn H. Gentry Forest Transect Data Set. The effects of mean annual precipitation and dry-season length (and temperature) on their occurrence were analysed using logistic regressions. Root climbers were significantly more frequent in sites with greater precipitation and reduced seasonality. Increasing temperature reduced root-climber occurrence in tropical sites, but this effect was marginally significant at a global scale. Dry and open habitats appear unsuitable for root climbers. This can be explained by the susceptibility to desiccation of adventitious roots and/or the low acclimation ability of these climbers to high irradiance.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

CARRASCO-URRA, F. & GIANOLI, E. 2009. Abundance of climbing plants in a southern temperate rain forest: host tree characteristics or light availability? Journal of Vegetation Science 20:11551162.CrossRefGoogle Scholar
CARTER, G. A. & TERAMURA, A. H. 1988. Vine photosynthesis and relationships to climbing mechanics in a forest understory. American Journal of Botany 75:10111018.CrossRefGoogle Scholar
DEWALT, S. J., SCHNITZER, S. A., CHAVE, J., BONGERS, F., BURNHAM, R. J., CAI, Z. Q., CHUYONG, G., CLARK, D. B., EWANGO, C. E. N., GERWING, J. J., GORTAIRE, E., HART, T., IBARRA-MANRIQUEZ, G., ICKES, K., KENFACK, D., MACIA, M. J., MAKANA, J. R., MARTINEZ-RAMOS, M., MASCARO, J., MOSES, S., MULLER-LANDAU, H. C., PARREN, M. P. E., PARTHASARATHY, N., PÉREZ-SALICRUP, D. R., PUTZ, F. E., ROMERO-SALTOS, H. & THOMAS, D. 2010. Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42:309317.CrossRefGoogle Scholar
DURIGON, J. & WAECHTER, J. L. 2011. Floristic composition and biogeographic relations of a subtropical assemblage of climbing plants. Biodiversity and Conservation 20:10271044.CrossRefGoogle Scholar
GALLAGHER, R. V. & LEISHMAN, M. R. 2012. A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39:17571771.CrossRefGoogle Scholar
GENTRY, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.CrossRefGoogle Scholar
GENTRY, A. H. 1991. The distribution and evolution of climbing plants. Pp. 352 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
GIANOLI, E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society B – Biological Sciences 271:20112015.CrossRefGoogle ScholarPubMed
GIANOLI, E. & SALDAÑA, A. 2013. Phenotypic selection on leaf functional traits of two congeneric species in a temperate rainforest is consistent with their shade tolerance. Oecologia, in press (doi: 10.1007/s00442-013-2590-2).CrossRefGoogle Scholar
GIANOLI, E., SALDAÑA, A., JIMÉNEZ-CASTILLO, M. & VALLADARES, F. 2010. Distribution and abundance of vines along the light gradient in a southern temperate rain forest. Journal of Vegetation Science 21:6673.CrossRefGoogle Scholar
HEGARTY, E. E. 1988. Canopy dynamics of lianes and trees in subtropical rainforest. Department of Botany, University of Queensland, Brisbane. 241 pp.Google Scholar
HEGARTY, E. E. 1991. Vine–host interactions. Pp. 357376 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
HEGARTY, E. E. & CABALLÉ, G. 1991. Distribution and abundance of vines in forest communities. Pp. 313336 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
ICHIHASHI, R., NAGASHIMA, H. & TATENO, M. 2010. Biomass allocation between extension- and leaf display-oriented shoots in relation to habitat differentiation among five deciduous liana species in a Japanese cool-temperate forest. Plant Ecology 211:181190.CrossRefGoogle Scholar
ISNARD, S. & SILK, W. K. 2009. Moving with climbing plants from Charles Darwin's time into the 21st century. American Journal of Botany 96:12051221.CrossRefGoogle Scholar
JIMÉNEZ-CASTILLO, M., WISER, S. K. & LUSK, C. H. 2007. Elevational parallels of latitudinal variation in the proportion of lianas in woody floras. Journal of Biogeography 34:163168.CrossRefGoogle Scholar
KALACSKA, M., SANCHEZ-AZOFEIFA, G. A., RIVARD, B., CALVO-ALVARADO, J. C. & QUESADA, M. 2008. Baseline assessment for environmental services payments from satellite imagery: a case study from Costa Rica and Mexico. Journal of Environmental Management 88:348359.CrossRefGoogle ScholarPubMed
KUSUMOTO, B., ENOKI, T. & KUBOTA, Y. 2013. Determinant factors influencing the spatial distributions of subtropical lianas are correlated with components of functional trait spectra. Ecological Research 28:919.CrossRefGoogle Scholar
ORIHUELA, R. L. 2010. Diversidade e abundância de hemiepífitos em um gradiente altitudinal na Floresta Atlântica no sul do Brasil. Universidade Federal do Rio Grande do Sul, Porto Alegre. 29 pp.Google Scholar
PHILLIPS, O. & MILLER, J. S. 2002. Global patterns of plant diversity: Alwyn H. Gentry's forest transect data set. Monograph in Systematic Botany from the Missouri Botanical Garden 89:1319.Google Scholar
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.CrossRefGoogle Scholar
PUTZ, F. E. & HOLBROOK, N. M. 1991. Biomechanical studies of vines. Pp. 7398 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
SCHNITZER, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. American Naturalist 166:262276.CrossRefGoogle ScholarPubMed
SCHNITZER, S. A. & BONGERS, F. 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17:223230.CrossRefGoogle Scholar
SCHNITZER, S. A. & BONGERS, F. 2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters 14:397406.CrossRefGoogle ScholarPubMed
TERAMURA, A. H., GOLD, W. G. & FORSETH, I. N. 1991. Physiological ecology of mesic, temperate woody vines. Pp. 245285 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
VALLADARES, F. & NIINEMETS, U. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution and Systematics 39:237257.CrossRefGoogle Scholar
VALLADARES, F., GIANOLI, E. & SALDAÑA, A. 2011. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade? Annals of Botany 108:231239.CrossRefGoogle ScholarPubMed
VAN DER HEIJDEN, G. M. F. & PHILLIPS, O. L. 2008. What controls liana success in Neotropical forests? Global Ecology and Biogeography 17:372383.CrossRefGoogle Scholar
WILDER, G. J. 1992. Comparative morphology and anatomy of absorbing roots and anchoring roots in three species of Cyclanthaceae (Monocotyledoneae). Canadian Journal of Botany 70:3848.CrossRefGoogle Scholar